Skip to main content

Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

We explain the meaning of dissipative solitons and place them in a framework which shows their use in various scientific fields. Indeed, dissipative solitons form a new paradigm for the investigation of phenomena involving stable structures in nonlinear systems far from equilibrium. We consider those aspects of the problem that can be studied on the basis of a qualitative analysis of nonlinear systems.

Keywords

  • Singular Point
  • Soliton Solution
  • Homoclinic Orbit
  • Dissipative System
  • Positive Real Part

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. N. Akhmediev and A. Ankiewicz, Solitons around us: Integrable, Hamiltonian and Dissipative systems, In: Optical Solitons, Theoretical and Experimental Challenges, Lecture Notes in Physics, vol. 613, Editors: K. Porsezian and V. C. Kurakose, (Springer, Berlin, 2003), pp. 105–126.

    Google Scholar 

  2. A. Ankiewicz and Y. Nagai, Chaos, solitons and fractals 13, 1345–58 (2002).

    Google Scholar 

  3. J. M. Soto-Crespo, N. Akhmediev and A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000).

    Google Scholar 

  4. N. Akhmediev and A. Ankiewicz, Solitons of the complex Ginzburg-Landau equation, In Spatial solitons, Editors: S. Trillo, W. Torruellas, Springer Series in Optical Sciences, vol. 82, (Springer, Berlin, 2001), pp. 311–339.

    Google Scholar 

  5. J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. E 66, 066610 (2002).

    Google Scholar 

  6. K. Maruno, A. Ankiewicz, N. Akhmediev Physica D 176, 44–66 (2003).

    Google Scholar 

  7. W. van Saarlos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749 (1990).

    Google Scholar 

  8. R. J. Deissler and H. Brand, Phys. Rev. Lett. 72, 478 (1994).

    Google Scholar 

  9. P. Kolodner, Phys. Rev. A 44, 6448 (1991).

    Google Scholar 

  10. M. Dennin, G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 77, 2475 (1996).

    Google Scholar 

  11. K. G. Müller, Phys. Rev. A 37, 4836 (1988).

    Google Scholar 

  12. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, (Springer, Berlin, 1984).

    Google Scholar 

  13. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and beams, (Chapman and Hall, London, 1997).

    Google Scholar 

  14. R. Conte, Chapter in Dissipative Solitons.

    Google Scholar 

  15. W. Van Saarlos and P. C. Hohenberg, Physica D, 56, 303 (1992).

    MATH  Google Scholar 

  16. J. M. Soto-Crespo, N. Akhmediev and K. Chiang, Phys. Lett. A. 291, 115 (2001).

    Google Scholar 

  17. T. Kapitula, Chapter in Dissipative Solitons.

    Google Scholar 

  18. N. Akhmediev, J. M. Soto-Crespo and G. Town, Phys. Rev. E, 63, 056602 (2001).

    Google Scholar 

  19. M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).

    MATH  Google Scholar 

  20. S. T. Cundiff, J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. Lett., 88 073903 (2002).

    Google Scholar 

  21. N. Akhmediev and J. M. Soto-Crespo, Phys. Lett. A 317, 287 (2003).

    Google Scholar 

  22. L. P. Shil’nikov, Sov. Math. Doklady 6, 163 (1965).

    Google Scholar 

  23. L. P. Shil’nikov, Math. USSR – Sbornik 10, 91 (1970).

    Google Scholar 

  24. C. P. Silva, Shil’nikov’s theorem – a tutorial, IEEE Transactions on circuits and systems, I: Fundamental theory and applications 40, 675 (1993).

    Google Scholar 

  25. B. Sandstede, J. Dynamics and Differential Equations 12, 449 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Akhmediev, N., Ankiewicz, A. Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_1

Download citation