Skip to main content

Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

In this chapter, we consider a theoretical framework for analyzing the strongly-amplitude modulated numerical pulse solutions recently observed in the complex Ginzburg-Landau Equation, which is a canonical model for dissipative, weakly-nonlinear systems. As such, the chapter also reviews background concepts of relevance to coherent structures in general dissipative systems (i.e. in regimes where such structures are stable and dominate the dynamics). This framework allows a comprehensive analysis of various bifurcations leading to transitions from one type of coherent structure to another as the system parameters are varied. It will also form a basis for future theoretical analysis of the great diversity of numericallyobserved solutions, even including the spatially-coherent structures with temporally quasi-periodic or chaotic envelopes observed in recent simulations.

Keywords

  • Solitary Wave
  • Coherent Structure
  • Period Doubling
  • Neutral Curve
  • Pulse Solution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P. G. Drazin and R. S. Johnson, Solitons: an Introduction, (Cambridge, Cambridge, 1989).

    Google Scholar 

  2. J. D. Murray, Mathematical Biology, (Springer-Verlag,Berlin, 1989).

    Google Scholar 

  3. W. van Saarloos and P. C. Hohenberg, { Physica}, D 56, 303 (1992).

    Google Scholar 

  4. N. J. Balmforth, { Ann. Rev. Fluid Mechanics} 27, 335 (1995).

    Google Scholar 

  5. C. Jayaprakash, F. Hayot and R. Pandit, { Phys. Rev. Lett.}, 71, 12 (1993).

    Google Scholar 

  6. C. V. Conrado and T. Bohr, { Phys. Rev. Lett.}, 72, 3522, (1994).

    Google Scholar 

  7. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, (Academic, London, 1982).

    Google Scholar 

  8. I. S. Aranson and L. Kramer, { Rev. Mod. Phys.}, 74, 99, (2002).

    Google Scholar 

  9. M. C. Cross and P. C. Hohenberg, { Rev. Mod. Phys.}, 65, 851, (1993).

    CrossRef  Google Scholar 

  10. L. Debnath and S. Roy Choudhury (Eds), Nonlinear Instability Analysis, (Computational Mechanics Publishers, Southampton, 1997).

    Google Scholar 

  11. S. Strogatz, Nonlinear Dynamics and Chaos, (Addison-Wesley, Reading, 1994).

    Google Scholar 

  12. N. Akhmediev, J. Soto-Crespo, and G. Town, { Phys. Rev. E} 63, 1 (2001).

    Google Scholar 

  13. R. J. Deissler and H.R. Brand, { Phys. Rev. Lett.} 72, 478 (1994).

    Google Scholar 

  14. S. Roy Choudhury, { Chaos, Solitons and Fractals} 2, 393 (1992).

    Google Scholar 

  15. A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics, (Wiley, New York, 1995).

    Google Scholar 

  16. B. Janiaud, A. Pumir, D. Bensimon V. Croquette, H. Richter, and L. Kramer, { Physica} D 55, 269 (1992).

    Google Scholar 

  17. L. Brusch, A. Torcini, and M. Bar,{ Physica} D 174, 152 (2003).

    Google Scholar 

  18. M. Buttiker and H. Thomas, { Phs. Rev.} A24, 2635 (1981).

    Google Scholar 

  19. A. V. Porubov and M.G. Velarde,{ J. Math. Phys.} 40, 884 (1999).

    Google Scholar 

  20. D. E. Bar and A. A. Nepomnyashchy, { Physica} D 86, 586 (1995);

    Google Scholar 

  21. H. H. Chang, E. A. Demekhin and E. Kalaidin, { SIAM J. Appl. Math.} 58, 1246 (1998).

    Google Scholar 

  22. C. Elphick, E. Meron and E.A. Spiegel, { SIAM J. Appl. Math.} 50, 490 (1990).

    Google Scholar 

  23. M. Or-Guil, I. G. Kevrekidis and M. Bar, { Physica} D135, 154 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Choudhury, S. Bifurcations and Strongly Amplitude-Modulated Pulses of the Complex Ginzburg-Landau Equation. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_17

Download citation