Skip to main content

Nonlinear Schrödinger Equation with Dissipation: Two Models for Bose-Einstein Condensates

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

Dissipation is a universal phenomenon which must be taken into account each time when one attempts to bring a theoretical description of a physical problem closer to the experimental situation. Dissipation can play either a principal role, i.e. determining the phenomenon itself (so that the latter disappears when dissipation is switched off), or a secondary role, i.e. affecting physical processes only by causing relatively small energy losses (so that the phenomenon persists in the absence of the dissipation). In the first case, it is customary to say that one deals with a dissipative system, while in the second case, one speaks of a dissipative perturbation of an originally conservative system.

Keywords

  • Periodic Solution
  • Periodic Wave
  • Optical Lattice
  • Modulational Instability
  • Scattering Length

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_14
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. N. Bose, Z. Phys, 26, 178 (1924).

    Google Scholar 

  2. A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 261 (1924).

    Google Scholar 

  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science, 269, 198 (1995).

    Google Scholar 

  4. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    CrossRef  Google Scholar 

  5. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari: Rev. Mod. Phys. 71, 463 (1999).

    CrossRef  Google Scholar 

  6. L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, (Pergamon Press, New York 1977).

    Google Scholar 

  7. L. P. Pitaevskii: Sov. Phys. JETP, 13, 451 (1961).

    Google Scholar 

  8. E. P. Gross, Nuovo Cimento, 20, 454 (1961).

    MATH  Google Scholar 

  9. L. D. Faddeev, L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, (Springer Verlag, Berlin, 1987).

    Google Scholar 

  10. E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skjii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  11. M. Abramovitz, I. A. Stegun, Handbook of Mathematical Functions, (Dower, New York, 1965).

    Google Scholar 

  12. D. K. Lawden, Elliptic Functions and applications, (Springer-Verlag, New York Inc., 1989).

    Google Scholar 

  13. F. Kh. Abdullaev, A. M. Kamchatnov, V. V. Konotop, A. V. Brazhnyi, Phys. Rev. Lett. 90, 230402 (2003).

    Google Scholar 

  14. S. Burger, K. Bongs, S. Dettmer, et al, Phys. Rev. Lett. 83, 5198 (1999).

    Google Scholar 

  15. J. Denschlag et al, Science 287, 97 (2000).

    Google Scholar 

  16. A. J. Moerdijk, B. J. Verhaar, A. Axelsson, Phys. Rev. A 51, 4852 (1995).

    Google Scholar 

  17. S. Inouye, et al, Nature (London), 392, 151 (1998).

    Google Scholar 

  18. P. Courteille et al, Phys. Rev. Lett., 81, 69 (1998).

    CrossRef  Google Scholar 

  19. K. E. Strecker et al, Nature 417, 150 (2002).

    CrossRef  Google Scholar 

  20. L. Khaykovich et al, Science 296, 1290 (2002).

    Google Scholar 

  21. P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, Phys. Rev. Lett. 90, 230401 (2003).

    Google Scholar 

  22. J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, K. Promislow, Phys. Rev. E 63, 036612 (2001).

    Google Scholar 

  23. J. C. Bronski, L. Carr, R. Carretero-Gonzalez, B. Deconinck, J. N. Kutz, K. Promislow, Phys. Rev. E 64, 056615 (2001).

    Google Scholar 

  24. G. Theocharis, Z. Rapti, P. G. Kevrekidis, D. J. Frantzeskakis, and V. V. Konotop, Phys. Rev. A 67, (2003).

    Google Scholar 

  25. L. D. Landau, E. M. Lifshitz, Electromagnetics of Continuous Media, (Pergamon Press, New York 1984).

    Google Scholar 

  26. C. Sulem, P. L. Sulem: The Nonlinear Schrödinger Equation (Springer-Verlag, New York, 1999).

    Google Scholar 

  27. T. Kawata, J. Phys. Soc. Japan, 51, 3381 (1982).

    Google Scholar 

  28. B. P. Anderson and M. Kasevich, Science, 282, 1686 (1998).

    Google Scholar 

  29. O. Morsch, E. Arimondo, Ultracold atoms and Bose-Einstein condensates in optical lattices arXiv:cond-mat/0209034 (2002).

    Google Scholar 

  30. F. Kh. Abdullaev, S. A. Darmanyan, J. Garnier, In Progress in Optics, vol 44, ed by E. Wolf (Elsvier, Amsterdam, 2002), p. 303

    Google Scholar 

  31. V. V. Konotop, M. Salerno, Phys. Rev. A 65, 021602 (2002).

    Google Scholar 

  32. B. B. Baizakov, V. V. Konotop, M. Salerno, J. Phys. B: Atomic, Molecular & Optical Physics, 35, 5105 (2002).

    Google Scholar 

  33. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch, Nature 415, 6867 (2002).

    Google Scholar 

  34. M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Konotop, V. Nonlinear Schrödinger Equation with Dissipation: Two Models for Bose-Einstein Condensates. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_14

Download citation