Skip to main content

Discrete Ginzburg-Landau Solitons

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

In this chapter, we present a review of recent results concerning dissipative lattices of the Ginzburg-Landau type. Firstly, we study effects such as complex discrete diffraction, as well as Bloch oscillations, arising from the linear properties of such systems. Subsequently, using a generic cubic-quintic nonlinearity, we identify self-localized dissipative discrete soliton solutions, and study their characteristics.

Keywords

  • Hopf Bifurcation
  • Brillouin Zone
  • Bifurcation Diagram
  • Soliton Solution
  • Waveguide Array

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_12
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    CrossRef  Google Scholar 

  2. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, (Springer, Berlin, 1984)

    Google Scholar 

  3. I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Google Scholar 

  4. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear pulses and beams, (Chapman and Hall, London, 1997)

    Google Scholar 

  5. P. Manneville, Dissipative Structures and Weak Turbulence, (Academic, San Diego, 1990)

    Google Scholar 

  6. G. Nicolis Introduction to Nonlinear Science, (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  7. L. M. Hocking and K. Stewartson, Proc. R. Soc. London, Ser. A 326, 289 (1972);

    Google Scholar 

  8. N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977)

    Google Scholar 

  9. K. Nozaki and N. Bekki, J. Phys. Soc. Jpn. 53, 1581 (1984)

    Google Scholar 

  10. W. van Saarloos and P. C. Hohenberg, Physica D 56, 303 (1992)

    MATH  Google Scholar 

  11. R. Conte and M. Musette, Physica D 69, 1 (1993)

    Google Scholar 

  12. P. Marcq, H. Chaté, and R. Conte, Physica D 73, 305 (1994)

    Google Scholar 

  13. N. N. Akhmediev, V. V. Afanasjev and J. M. Soto Crespo, Phys. Rev. E 53, 1190 (1996)

    Google Scholar 

  14. L. C. Crasovan, B. A. Malomed and D. Mihalache, Phys. Lett. A 289, 59 (2001)

    Google Scholar 

  15. J. M. Soto-Crespo, N. Akhmediev and A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000)

    Google Scholar 

  16. P. S. Hagan, SIAM J. Appl. Math. 42, 762 (1982)

    Google Scholar 

  17. L. C. Crasovan, B. A. Malomed and D. Mihalache, Phys. Rev. E 63, 016605 (2001)

    Google Scholar 

  18. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988)

    Google Scholar 

  19. D. N. Christodoulides, F. Lederer and Y. Silberberg, Nature 424, 817 (2003)

    Google Scholar 

  20. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998)

    Google Scholar 

  21. H. Willaime, O. Cardoso and P. Tabeling, Phys. Rev. Lett. 67, 3247 (1991)

    Google Scholar 

  22. S. S. Wang and H. G. Winful, Appl. Phys. Lett. 52, 1774 (1988);

    Google Scholar 

  23. H. G. Winful and S. S. Wang, Appl. Phys. Lett. 53, 1894 (1988)

    Google Scholar 

  24. K. Otsuka, Nonlinear dynamics in optical complex systems, (KTK Scientific Publishers, Tokyo, 1999)

    Google Scholar 

  25. K. Otsuka, Phys. Rev. Lett. 65, 329 (1990);

    Google Scholar 

  26. H. G. Winful and L. Rahman, Phys. Rev. Lett. 65, 1575 (1990)

    Google Scholar 

  27. N. K. Efremidis and D. N. Christodoulides, Phys. Rev. E 67, 026606 (2003)

    Google Scholar 

  28. K. Maruno, A. Ankiewicz and N. Akhmediev, Opt. Comm. 221, 199 (2003)

    Google Scholar 

  29. K. Staliunas, Phys. Rev. Lett. 91, 053901 (2003)

    Google Scholar 

  30. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 29, 2485 (2004)

    Google Scholar 

  31. U. Peschel, T. Pertsch and F. Lederer, Opt. Lett., 23, 1701 (1998)

    Google Scholar 

  32. T. Pertsch, P. Dannberg, W. Elflein, A. Brüer and F. Lederer, Phys. Rev. Lett. 83, 4752 (1999)

    Google Scholar 

  33. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Phys. Rev. Lett. 83, 4756 (1999)

    Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).

    Google Scholar 

  35. E. A. Ultanir, G. I. Stegeman, and D. N. Christodoulides, Opt. Lett. 29, 845 (2004).

    Google Scholar 

  36. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

    Google Scholar 

  37. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

    Google Scholar 

  38. B. Kneer, T. Wong, K. Vogel, W. P. Schleich and D. F. Walls, Phys. Rev.A 58, 4841 (1998).

    Google Scholar 

  39. F. T. Arecchi, J. Bragard and L. M. Castellano, In: Bose-Einstein Condensates and Atom Lasers, edited by S. Martellucci, A. N. Chester, A. Aspect, and M. Inguscio. (Kluver, New York, 2002).

    Google Scholar 

  40. F. Bloch, Z. Phys., 52, 555 (1928).

    Google Scholar 

  41. Y. S. Kivshar, Opt. Lett. 18, 1147 (1993).

    Google Scholar 

  42. S. Darmanyan, A. Kobyakov and F. Lederer, Zh. ksp. Teor. Fiz. 113, 1253 (1998) [Sov. Phys. JETP 86, 682 (1998)].

    Google Scholar 

  43. P. G. Kevrekidis, A. R. Bishop and K. O. Rasmussen, Phys. Rev. E 63, 036603 (2001).

    Google Scholar 

  44. N. K. Efremidis and D. N. Christodoulides, Phys. Rev. E 65, 056607 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Efremidis, N., Christodoulides, D. Discrete Ginzburg-Landau Solitons. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_12

Download citation