Skip to main content

The Geological Context for the Origin of Life and the Mineral Signatures of Fossil Life

  • Chapter
  • First Online:
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appel, P.W.U., Moorbath, S. (1999). Exploring Earth's oldest geological record in Greenland. Eos, 80, 257–264.

    Google Scholar 

  • Appel, P.W.U., Rollinson, H., Touret, J.L.R. (2001). Remnants of an Early Archean (>3.75Ga) sea-floor, hydrothermal system in the Isua greenstone belt. Precambrian Res., 112, 27–49.

    Google Scholar 

  • Appel, P.W.U., Moorbath, S., Touret, J. (2003). Isuasphaera Isua revisited. Precambrian Res. 176, 173–180.

    Google Scholar 

  • Arndt, N. (1994). Archean komatiites, in Archean Crustal Evolution, ed. K.C. Condie, p. 11–44, Elsevier, Amsterdam.

    Google Scholar 

  • Arndt, N., Chauvel, C. (1991). Crust of the Hadean Earth. Bull. Geol. Soc. Denmark, 39, 145–151.

    Google Scholar 

  • Baross, J.A., Hoffman, S.E. (1985). Submarine hydrothermal vents and associated gradient environment as sites for the origin and evolution of life. Origins Life Evol. Biosph., 15, 327–345.

    Google Scholar 

  • Beaumont, V., Robert, F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmospheric chemistry? Precambrian Res., 96, 63–82.

    Google Scholar 

  • Bowring, S.A., Housh, T. (1995). The Earth's early evolution. Science, 269, 1535–1540.

    Google Scholar 

  • Bowring, S.A., Williams, I.S., 1999. Priscoan (4.004.003Ga) orthogneisses from northwestern Canda. Contrib. Mineral. Petrol., 134, 3–16.

    Google Scholar 

  • Brasier, M.D., Lindsay, J.F. (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 2, 555–558.

    Google Scholar 

  • Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Kranendonk, M., Lindsay, J.F., Steele, A., Grassineau, N. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81.

    Google Scholar 

  • Bridgewater, D., Allart, J.H., Schopf, J.W., Klein, C., Walter, M.R., Baarghoorn, E.S., Strother, P., Knoll, A.H., Gorman, B.E. (1981). Microfossil-like objects from the Archaean of Greenland: a cautionary note. Nature, 289, 51–53.

    Google Scholar 

  • Brocks, J.J., Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E., Buick, R. (2003). Release of bound aromatic hydrocarbons from late Archean and Mesoarchean kerogens via hydropyrolysis. Geochim. Cosmochim. Acta., 67, 1521–1530.

    Google Scholar 

  • Byerly, G.R., Lowe, D.R., Wooden, J., Xie, X. (2002). An Archean Impact Layer from the Pilbara and Kaapvaal Cratons, Science, 297, 1325–1327.

    Google Scholar 

  • Campbell, I.H., Taylor, I.R. (1983). No water, no granites – no granites, no continents. Geophys. Res. Lett., 10, 1061–1064.

    Google Scholar 

  • Cockell, C.S. (2000). The ultraviolet history of the terrestrial planets – implications for biological evolution. Planet. and Space Sci., 4, 203–214.

    Google Scholar 

  • Dauphas, N., Robert, F., Marty, B. (2000). The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratio. Icarus, 148, 508–512.

    Google Scholar 

  • Delano, J.W. (2001). Redox history of the Earth's interior since ∼3900Ma: Implications for prebiotic molecules. Origins Life Evol. Biosph., 31, 311–341.

    Google Scholar 

  • Delsemme, A. (1998). Cosmic origin of the biosphere, in The Molecular Origins of Life, ed. A. Brack, pp. 100–118, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • De Ronde, C.E.J., de Wit, M.J., Spooner, E.T.C. (1994). Early Archaean (>3.2Ga) iron-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa. Geol. Soc. Amer. Bull., 106, 86–104.

    Google Scholar 

  • De Vries, S.T., Nijman, W. (2001). Environmental conditions and hydrothermal systems: Buck Ridge Chert Complex, Barberton, SA, in Int. Archean Symp. eds. K.F. Cassidy, J.M. Dunphy, M.J. van Kranendonk, M.J.), p. 224–226, AGSO-Geosc. Aust., 2001/37, Perth.

    Google Scholar 

  • De Wit, M.J., Hart, R.A. (1993). Earth's earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos, 30, 309–336.

    Google Scholar 

  • Drake, M.J., Righter, K. (2002). Determining the composition of the Earth. Nature, 416, 39–44.

    Google Scholar 

  • Fisk, M.R., Giovannoni, S.J., Thorseth, I.H. (1998). Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science, 281, 978–980.

    Google Scholar 

  • Eriksson, K.A. (1995). Crustal growth, surface processes and atmospheric evolution of early Earth, in Early Precambrian Processes, eds. M.P. Coward, A.C. Ries, Geol. Soc. Lond., Sp. Pub. 95, 11–26.

    Google Scholar 

  • Farquahr, J., Bao, H., Thiessen, M. (2000). Atmospheric influence of Earth's earliest sufur cycle. Science, 289, 756–758.

    Google Scholar 

  • Fredrickson, J.K., Onstott, T.C. (1996). Microbes deep inside the earth. Sci. Am. 27(4), 42.

    Google Scholar 

  • Gold, T. (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences 89, 6045–6049.

    Google Scholar 

  • Grotzinger, J.P., Kasting, J.F. (1993). New constraints on Precambrian ocean composition. J. Geol., 101, 235–243.

    Google Scholar 

  • Halliday, A.N. (2001). In the beginning. Nature, 409, 144–145.

    Google Scholar 

  • Hartmann, W.K., Ryder, G., Dones, L., Grinspoon, D. (2000). The time-dependent intense bombardment of the primordial Earth/Moon system, in Origin of The Earth and Moon Eds. R.M. Canup and K. Righter, 493–512, University of Arizona Press.

    Google Scholar 

  • Hayes, J.M. (1983). Geochemical evidence bearing on the origin of aerobis, a speculative hypothesis, in Earth's Earliest Biosphere ed. J.W. Schopf, 291–301, Princeton Univ. Press, Princeton.

    Google Scholar 

  • Hayes, J.M., Kaplan I.R., Wedeking K.W. (1983). Precambrian organic chemistry, preservation of the record. In Earth's Earliest Biosphere ed. J.W. Schopf, 93–134, Princeton Univ. Press. Princeton.

    Google Scholar 

  • Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R.I. (1999). Origin of 3.45Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull., 111, 1256–1262.

    Google Scholar 

  • Holland, H. D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Holm, N.G. (1992). Why are hydrothermal systems proposed as plausible environments for the origin of life? Origins Life Evol. Biosph., 22, 5–14.

    Google Scholar 

  • Isozaki, Y., Ueno, Y., Yurimoto, H., Maruyama, S. (1999). 3.5Ga kerogen-rich silica dykes from North Pole area, Western Australia: seafloor biosphere in the Archean? AGU Fall Meeting Abst. B42B–20.

    Google Scholar 

  • Jahn, B.M., 1997. Géochimie des granitoides archéens et de la croûte primitive. In: R. Hagemann and M. Treuil (Eds.), Introduction à la Géochimie et ses Applications. Editions Thierry Parquet.

    Google Scholar 

  • Kamber, B.S., Moorbath, S., Whitehouse, M.J. (2001). The oldest rocks on earth: time constraints and geological controversies, in The Age of the Earth: from 4004 BC to AD 2002, eds. C.L.E. Lewis, S.J. Knell, Geol. Soc. Lond. Sp. Pub. 190, 177–203.

    Google Scholar 

  • Kasting, J.F. (1991). Box models for the evolution of atmospheric oxygen: An update. Paleogeogr. Paleoclimat., Paleoecol., 97, 125–131.

    Google Scholar 

  • Kasting, J.F. (1993). Earth's early atmosphere. Science, 259, 920–926.

    Google Scholar 

  • Kasting, J.F., Pavlov, A.A., Siefert, J.L. (2001). A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere. Origins Life Evol. Biosph., 31, 271–285.

    Google Scholar 

  • Kempe, A., Schopf, J.W., Altermann, W., Kudryavtsev, A.B., Heckl, W.M., 2002. Atomic force microscopy of Precambrian microscopic fossils. Proc. Natl. Acad. Sci., 99 (14): 9117–9120.

    Google Scholar 

  • Kempe, S., Degens, E.T. (1985). An early soda ocean? Chem. Geol., 5, 95–108.

    Google Scholar 

  • Knauth, L.P. (1998). Salinity history of Earth's early ocean. Nature, 395, 554–555.

    Google Scholar 

  • Knauth, L.P., Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull., 115, 566–580.

    Google Scholar 

  • Knoll, A.K. (1992). The early evolution of eukaryotes: a geological perspective. Science, 256, 622–627.

    Google Scholar 

  • Kramers, J.D. (2003). Volatile element abundance patterns and an early liquid water ocean on Earth. Precambrian Res., 126, 379–394.

    Google Scholar 

  • Kring, D.A., Cohen, B.A. (2002). Cataclysmic bombardment throughout the inner solar system 3.94.0Ga. J. Geophys. Res., 107, 10.1029/2001JE001529.

    Google Scholar 

  • Kyte, F.T., Shukolyukov, A., Lugmaor, G.W., Lowe, D.R., Byerly, G.R. (2003). Early Archean spherule beds: Chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology, 31, 283–286.

    Google Scholar 

  • Lepland, A., Arrhenius, G., Cornell, D. (2002) Apatite in early Archean Isua supra­crus­tal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Res., 118, 221–241.

    Google Scholar 

  • Lindsay, J.F., Brasier, M.D. (2000). A carbon isotope reference curve for c. 1700 to 1575 Ma, McArthur and Mount Isa Basins, northern Australia. Precambrian Res., 99, 271–308.

    Google Scholar 

  • Lindsay, J.F., Brasier, M.D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9Ga carbonates of Western Australian basins. Precambrian Res., 114, 1–34.

    Google Scholar 

  • Lovelock, J.E. (1988). The Ages of Gaia. W.W. Norton, New York.

    Google Scholar 

  • Lowe, D.R. (1999). Geologic evolution of the Barberton greenstone belt and vicinity, in Geologic evolution of the Barberton greenstone belt, South Africa, eds. D.R. Lowe, G.R. Byerly, Geol. Soc. Am. Spec. Paper, 329, 287–312.

    Google Scholar 

  • Lowe, D.R., Byerly, G.R. (1986). Early Archean silicate spherules of probable impact origin, South Africa and Western Australia, Geology, 14, 83–86.

    Google Scholar 

  • Maher, K.A., Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Google Scholar 

  • Martin, H. (1994). The Archean grey gneisses and the genesis of the continental crust. In: K.C. Condie (Ed.), The Archean crustal evolution. Developments in Precambrian Geology. Elsevier, Amsterdam, pp. 205–259.

    Google Scholar 

  • Maurette, M. (1998). Carbonaceous micrometeorites and the origin of life. Origins Life Evol. Biosphere., 28, 385–412.

    Google Scholar 

  • Maurette, M., Duprat, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., Toppani, A. (2000). Accretion of neon, organics, nitrogen and water from large interplanetary dust particles on the early earth. Planet. Space Sci., 48, 1117–1137.

    Google Scholar 

  • Maurette, M., Matrajit, G., Gounelle, M., Engrand, C., Duprat, J. (2001). La matière extraterrestre primitive et les mystères de nos origines, in L'Eviron­ne­ment de la Terre Primitive, eds. M. Gargaud, D. Despois, J.-P. Parisot, p. 99–127, Presses Univ. Bordeaux, Bordeaux.

    Google Scholar 

  • McCulloch, M.T., Bennet, V.C. (1993) Evolution of the early Earth: constraints from 143Nd-142Nd isotopic systematics. Lithos, 30, 237–255.

    Google Scholar 

  • McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maedling, C.R., Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.

    Google Scholar 

  • Morbidelli, A., Benest, D. (2001). Evolution primordiale du sytème solaire interne et origine de l'eau, in L'Evironnement de la Terre Primitive, eds. M. Gargaud, D. Despois, J.-P. Parisot, 91–98, Presses Univ. Bordeaux, Brodeaux.

    Google Scholar 

  • Morbidelli, A., Chambers, J., Lunine, J., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E. (2000). Source regions and timescales for the delivery of water to the Earth. Meteoritics and Planet. Sci., 35, 1309–1320.

    Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., Keegan, K.D., Harrison, T.H., Nutman, A.P. Friend, C.L.R. (1996). Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59.

    Google Scholar 

  • Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409, 178–181.

    Google Scholar 

  • Nijman, W., de Bruijne, K.H., Valkering, M. (1999). Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res., 95, 247–274.

    Google Scholar 

  • Nisbet, E.G. (1995). Archaean ecology: a review of evidence for the early development of bacterial biomes, and speculation on the development of a global-scale biosphere, in Early Precambrian Processes, eds. M.P. Coward, A.C. Ries, 27–52, Geological Soc. London, Oxford.

    Google Scholar 

  • Nisbet, E.G., Sleep, N.H., (2001). The habitat and nature of early life. Nature, 409, 1083–1091.

    Google Scholar 

  • Noffke, N., Hazen, R., Nhleko, N. (2003). Earth's earliest microbial mats in a siliclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31, 673–676.

    Google Scholar 

  • Nyquist, L.E., Shih, C.Y. (1992). The isotopic record of lunar volcanism. Geoch. Cosmochim. Acta, 56, 2213–2243.

    Google Scholar 

  • Ohmoto, H. (1997). Evidence in pre-2.2Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology, 24, 1135–1138.

    Google Scholar 

  • Ohmoto, H. (1999). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara craton, Australia: Comment. Geology, 27, 1151–1152.

    Google Scholar 

  • Owen, T.C. (1998). The origin of the atmosphere, in The Molecular Origins of Life, ed. A. Brack, 13–34, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Owen, T.C., Bar Nun, A. (2000). Volatile contributions from icy planetesimals, in Origin of the Earth and Moon, eds. R.M. Canup, K. Righter, p. 459–471, University of Arizona Press, Arizona.

    Google Scholar 

  • Paris, I., Stanistreet, I.G., Hughes, M.J. (1985). Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. J. Geol., 93, 111–129.

    Google Scholar 

  • Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., Freedman, R. (2001). Greenhouse warming by CH4 in the atmosphere of early earth. J. Geophys. Res., 105, 11981–11990.

    Google Scholar 

  • Pflug, H.D. (2001). Earliest organic evolution. Essay to the memory of Bartholomew Nagy. Precambrian Res., 106, 79–91.

    Google Scholar 

  • Pflug, H.D., Jaeschke-Boyer, H. (1979). Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature, 280, 483–486.

    Google Scholar 

  • Pinti, D.L. (2004) The origin and evolution of the oceans. This volume.

    Google Scholar 

  • Pinti, D.L., Hashizume, K. (2001). 15N-depleted nitrogen in Early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? Precambrian Res., 105, 85–88.

    Google Scholar 

  • Pinti, D.L., Hashizume, K, Matsuda, J.-I., (2001). Nitrogen and argon signatures in 3.82.8Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65, 2301–2315.

    Google Scholar 

  • Rasmussen, B., Buick, R. (1999a). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara craton, Australia: Geology, 27, 115–118.

    Google Scholar 

  • Rasmussen, B., Buick, R. (1999b). Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara craton, Australia: Reply. Geology, 27, 1152.

    Google Scholar 

  • Reysenbach, A.-L., Cady, S.L. (2001). Microbiology of ancient and modern hydrothermal systems. Trends in Microbiol., 9, 79–86.

    Google Scholar 

  • Robbins, E.I. (1987). Appelella ferrifera, a possible new iron-coated microfossil in the Isua Iron Formation, southwestern Greenland, in Precambrian Iron Formations. eds. P.W.U. Appel, G.L. LaBerge, p. 141–154, Theophrastes, Athens.

    Google Scholar 

  • Robbins, E.I., LaBerge, G.L., Schmidt., R.G. (1987). A model for the biological precipitation of Precambrian Iron-Formations – B. Morphological evidence and modern analogs in Precambrian Iron Formations. eds. P.W.U. Appel, G.L. LaBerge, p. 97–139, Theophrastes, Athens.

    Google Scholar 

  • Robbins, E.I., Iberall, A.S. (1991). Mineral remains of early life on Earth? On Mars? Geomicrobiol. J., 9, 51–66.

    Google Scholar 

  • Robert, F. (1988). Carbon and oxygen isotope variations in Precambrian cherts. Geochim. Cosmochim. Acta, 52, 1473–1478.

    Google Scholar 

  • Robert, F. (2001). L'origine de l'eau dans le système solaire telle qu'elle est enregistrée par son apport isotopique D/H, in L'Evironnement de la Terre Primitive, eds. M. Gargaud, D. Despois, J.-P. Parisot, p. 79–90, Presses Univ. Bordeaux, Bordeaux.

    Google Scholar 

  • Roedder, E. (1981). Are the 3,800 Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature, 293, 459–462.

    Google Scholar 

  • Rosing, M.T. (1999). 13C depleted carbon microparticles in > 3700Ma seafloor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Google Scholar 

  • Rosing, M.T., Rose, N.M., Bridgewater, D., Thomsen, H.S. (1996). Earliest part of Earth's stratigraphic record: reappraisal of the >3.7Ga Isua (Greenland) supra­crus­tal sequence. Geology, 24, 43–46.

    Google Scholar 

  • Runnegar, B. (2002). Archean sulfates from Western Australia: implications for Early Archean atmosphere and chemistry. Goldschmidt Conf., Davos, August, 2002# 3859.

    Google Scholar 

  • Ryder, G., Koeberl, C., Mojzsis, S.J. (2000) Heavy bombardment on the Earth at ∼3.85Ga, The search for petrographic and geochemical evidence, in Origin of the Earth and Moon, (eds.) R.M. Canup, K. Righter, p. 475–492, University of Arizona Press, Arizona.

    Google Scholar 

  • Rye, R., Kuo, P.H., Holland, H.D. (1995). Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature, 378, 603–605.

    Google Scholar 

  • Sagan, C., Chyba, C. (1997). The early sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276, 1217–1221.

    Google Scholar 

  • Schidlowski, M. (1988). A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

    Google Scholar 

  • Schidlowski, M., Hayes, J.M., Kaplan, I.R. (1983). Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen, in Earth's Earliest Biosphere, ed. J.W. Schopf, p.149–186, Princeton Univ. Press, Princeton.

    Google Scholar 

  • Schopf, J.W. (1992). Paleobiology of the Archean, in The Proterozoic Biosphere, eds. J.W. Schopf and C. Klein, p. 25–42, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Schopf, J.W. (1993). Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646.

    Google Scholar 

  • Schopf, J.W., Walter, M.R., (1983). Archean microfossils: new evidence of ancient microbes, in Earth's Earliest Biosphere, ed. J.W. Schopf, 214–239, Princeton Univ. Press, Princeton.

    Google Scholar 

  • Schopf, J.W., Packer, B.M., (1987). Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warawoona Group, Australia. Science, 237, 70–73.

    Google Scholar 

  • Schopf, J.W., Kudryavtsvev, A.B., Agresti, D.G., Wdowiak, T.J., Czaja, A.D. (2002). Laser-Raman imagery of Earth's earliest fossils. Nature, 416, 73–76.

    Google Scholar 

  • Shen, Y., Buick, R., Canfield, D.E. (2001). Isotopic evidence for microbial sulfate reduction in the early Archaean era. Nature, 410, 77–81.

    Google Scholar 

  • Sleep, N.H., Zahnle, K.J., Kasting, J.F., Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

    Google Scholar 

  • Sleep, N.H., Zahnle, K., and Neuhoff, P. S. (2001). Initiation of clement surface conditions on the early Earth, Proc. Nat. Acad. Sci. USA, 98, 3666–3672.

    Google Scholar 

  • Strauss, H., Moore, T.B. (1992). Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples, in The Proterozoic Biosphere: A Multidisciplinary Study eds. J.W. Schopf, C. Klein, p.709–798, Camdridge Univ. Press, Cambridge.

    Google Scholar 

  • Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, J.H. (1999). 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature , 400, 554–557.

    Google Scholar 

  • Tolstikhin, I.N., Marty, B. (1998). The evolution of crustal volatiles: a view from helium, neon, argon and nitrogen modelling. Chem. Geol., 147, 27–52.

    Google Scholar 

  • Toporski, J.K.W., Steele, A., Westall, F., Avci, R., Martill, D.M., Mckay, D.S. (2001). In-situ biomarker detection using TOF-SIMS and high resolution electron microscopy imaging of an exceptionally well preserved bacterial biofilm from the 28 million year old Enspel formation. Geoch. Cosmoch. Acta, 66, 1773–1791.

    Google Scholar 

  • Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, H. (2001). Early Archeans (ca. 3.5Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry, in Geochemistry and the Origin of Life, eds. S. Nakashsima, S. Maruyama, A. Brack, and B.F. Windley, 203–236, Universal Acad. Press, Tokyo.

    Google Scholar 

  • Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A., (2002). A Cool Early Earth. Geology, 30, 351–354.

    Google Scholar 

  • Van Kranendonk, M., Webb, G.E., Kamber, B.S. (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and bogenicity of 3.45Ga carbonates in the Pilbara, and support for a reducing Archean ocean. Geobiology, 1, 91–108.

    Google Scholar 

  • Van Zuilen, M., Lepland, A., Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.

    Google Scholar 

  • Vervoort, J.D., Patchett, P.J., Gehrels, G.E., Nutman, A.J. (1996). Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379, 624–627.

    Google Scholar 

  • Walker, J.C.G. (1985): Carbon dioxide on the early Earth. Origins of Life, 16, 117–127.

    Google Scholar 

  • Walsh, M.M. (1989). Carbonaceous cherts of the Swaziland Supergroup, Barberton Mountain Land, Southern Africa. PhD thesis, Louisiana State University.

    Google Scholar 

  • Walsh, M.M. (1992). Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res., 54, 271–293.

    Google Scholar 

  • Walsh, M.M., Lowe, D.R. (1999). Modes of accumulation of carbonaceous matter in the early Archaean: A petrographic and geochemical study of carbonaceous cherts from the Swaziland Supergroup, in Geologic evolution of the Barberton greenstone belt, South Africa, eds. D.R. Lowe, G.R. Byerly, Geol. Soc. Am Spec. Paper, 329, 115–132.

    Google Scholar 

  • Walsh, M.M., Westall, F. (2003). Archean biofilms preserved in the 3.23.6Ga Swaziland Supergroup, South Africa, in Fossil and Recent Biofilms, eds. W.E. Krumbein, T. Dornieden, M. Volkmann, Kluwer, Amsterdam, 307–316.

    Google Scholar 

  • Watanabe, Y., Martini, J.E.J., Ohmoto, H. (2000). Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature, 408, 574–578.

    Google Scholar 

  • Westall, F. (1999). The nature of fossil bacteria. J. Geophys. Res., 104, 16437–16451.

    Google Scholar 

  • Westall, F. (2003). Stephen Jay Gould, les procaryotes et leur évolution dans le contexte géologique. Paléovol, 2, 485–501.

    Google Scholar 

  • Westall, F., De Wit, M.J., Walsh, M.M., Folk, R.L., Chafetz, H., Gibson, E.K. (1999). An Early Archean, organic carbon-rich microbialite (3.33.4Ga) from the Barberton greenstone belt, South Africa. Intl. Soc. Study of the Origin of Life (ISSOL), San Diego, Abstr.

    Google Scholar 

  • Westall, F., Folk., R.L. (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Res., 126, 313–330.

    Google Scholar 

  • Westall, F., Walsh, M.M. (2003) Fossil biofilms and the search for life on Mars. In Fossil and Recent Biofilms (eds. W.E. Krumbein, T. Dornieden, and M. Volkmann, Kluwer, Amsterdam, 447–466.

    Google Scholar 

  • Westall, F., Boni. L., Guerzoni, M.E. (1995). The experimental silicification of microorganisms. Palaeontology., 38, 495–528.

    Google Scholar 

  • Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guidry, S., Gibson, E., Mckay, D., Chafetz, H. (2000). Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial materials. J. Geophys. Res., 105, 24511–24527.

    Google Scholar 

  • Westall, F., De Wit, M.J., Dann, J., Van Der Gaast., S., De Ronde., C., Gerneke., D. (2001). Early Archaean fossil bacteria and biofilms in hydrothermally-influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Res., 106, 93–116.

    Google Scholar 

  • Westall, F., Brack, A., Barbier, B., Bertrand, M., Chabin, A. (2002). Early Earth and early life: an extreme environment and extremophiles – application to the search for life on Mars. ESA Spec. Pub. , 518, 131–136.

    Google Scholar 

  • Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on earth 4.4 Gyr ago. Nature, 409, 175–178.

    Google Scholar 

  • Wynn-Williams, D.D., Edwards, H.G.M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: Overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144, 486–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westall, F. (2005). The Geological Context for the Origin of Life and the Mineral Signatures of Fossil Life. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_7

Download citation

Publish with us

Policies and ethics