Skip to main content

Thermal Evolution of the Earth During the First Billion Years

  • Chapter
  • First Online:
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

  • 1559 Accesses

Abstract

There is good evidence that life occurred on Earth during the first billion years of its history. Modelling the dynamics of the Earth at this period of time is critical to understand the conditions of the emergence of life. These conditions are the result of the coupling between the inner and outer envelopes of the Earth. Several processes such as volcanism, magnetic field and plate tectonics originate in the Earth’s deep layers. They control the physical and chemical conditions of the outer layers (atmosphere, hydrosphere, and crust) where life appeared and developed. The goal of this chapter is to describe these internal processes and to present models for Earth’s evolution. After a descriptive summary of our current knowledge of the Earth’s deep interior, this chapter explains the mechanisms of heat transfer to the surface by subsolidus thermal convection, a process that drives the Earth’s surface dynamics (volcanism and plate tectonics). The last part of this chapter addresses the Earth’s magnetic field and how it prevents atmospheric escape and preserves the present atmosphere. Throughout this chapter, references to conditions existing on Earth-like planets are given to illustrate how the knowledge of these planets contributes to a better understanding of the history of our own planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, M.H. et al., Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment, Science, 284, 790–793, 1999.

    Google Scholar 

  • Blichert-Toft, J., Boyet, M., Télouk, P., Albarède, F., 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body, Earth Planet. Sci. Lett., 167–181, 2002.

    Google Scholar 

  • Boehler, R., The phase diagram of iron to 430 kbar, Geophys. Res. Lett., 13, 1153–1156, 1986.

    Google Scholar 

  • Boehler, R., Melting of the Fe-FeO and the Fe-FeS system at high pressure: constraints on core temperature, Earth Planet. Sci. Lett., 111, 217–227, 1992.

    Google Scholar 

  • Boehler, R., Von Bargen N., Chopelas A., Melting, thermal expansion, and phase transitions of iron at high pressures, J. Geophys. Res., 95, 21731–21736, 1990.

    Google Scholar 

  • Bolt, B., Inside the Earth, Library of Congress Cataloging in Pubication Data, 191 pp. 1982.

    Google Scholar 

  • Boyet, M., Blichert-Toft, J., Rosing, M., Storey, M., Télouk, P., Albarède, F., 142Nd evidence for early Earth differentiation, Earth Planet. Sci. Lett., 214, 427–442, 2003.

    Google Scholar 

  • Canup, R.M., Simulations of a Late Lunar-Forming Impact, Icarus, in press.

    Google Scholar 

  • Choblet, G., Sotin, C., 3D thermal convection models of fluids with variable viscosity: comparison between secular cooling and volumetric heating, Phys. Earth Planet. Int., 119, 321–336, 2000.

    Google Scholar 

  • Coe, R.S., Prevot, M., Camps, P., New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature, 374, 687–692, 1995.

    Google Scholar 

  • Davaille, A., Simultaneous generation of hot-spots and superswells by convection in a heterogeneous planetary mantle, Nature, 402, 756–760, 1999.

    Google Scholar 

  • Davaille, A., Jaupart, C., Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid Mech., 253, 141–166, 1993.

    Google Scholar 

  • Deschamps, F., Sotin, C., Inversion of 2D numerical convection experiments for a strongly temperature-dependent viscosity fluid, Geophys. J. Int., 143, 204–218, 2000.

    Google Scholar 

  • Deschamps, F., Trampert, J., Mantle tomography and its relation to temperature and composition, Phys. Earth Planet. Inter., 140, 277–291, 2003.

    Google Scholar 

  • Dumoulin, C., Douin, M-P., Fleitout, L., Heat transport in stagnant lid convection with temperature and pressure dependent Newtonian and non-Newtonian rheology, J. Geophys. Res., 104, 12759–12778, 1999.

    Google Scholar 

  • Dziewonski, A.M., Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet Int., 25, 297–356, 1981.

    Google Scholar 

  • Glatzmaier, G.A., Roberts, P., A three-dimensional self-consistent computer simulation of a geomagnetic reversal, Nature, 377, 203–208, 1995.

    Google Scholar 

  • Grasset, O., Parmentier, E.M., Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution, J. Geophys. Res., 103, 18171–18181, 1998.

    Google Scholar 

  • Halliday, A.N., Hf-W chronometry and inner Solar System accretion rates, in From dust to terrestrial planets (W. Benz et al., eds.), Space Sci. Rev., 92, 355–370, 2000.

    Google Scholar 

  • Hartmann, W.K., Phillips, J., Taylor, G.J. (eds.), Origin of the Moon, Lunar and Planetary Institute, Houston, TX, 1986.

    Google Scholar 

  • Head, J., Crumpler, L.S., Aubele, J., Guest J.E., Saunders, R.S., Venus volcanism: classification of volcanic structures, associations, and global distribution from Magellan data, J. Geophys. Res., 97, 13153–13197, 1992.

    Google Scholar 

  • Karato, S.-I., Karki, B.B., Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21771–21783, 2001.

    Google Scholar 

  • Labrosse, S., Poirier, J-P., LeMouel J-L., On the cooling of the Earth's core, Phys. Earth Planet. Int., 99, 1–17, 1997.

    Google Scholar 

  • Lambeck, K., Johnston, P., The viscosity of the mantle: evidence from analyses of glacial-rebound phenomena. In The Earth's Mantle: Composition, Structure and Evolution, 461–502, Jackson (ed.), Cambridge University Press, Cambridge, England, 1998.

    Google Scholar 

  • Lehmann, I., P, Bureau Central seismologique international, Series A, Travaux Scientifiques, 14, 88, 1936.

    Google Scholar 

  • Manga, M., Weeraratne, D., Experimental study of a non-Boussinesq Rayleigh-Bénard convection at high Rayleigh and Prandtl numbers, Phys. Fluid, 11, 2969–2976, 1999.

    Google Scholar 

  • Matson, D.L., Johnson, T., Veeder, G.J., Blaney, D.L., Davies, A.G., Upper bound on Io's heat flow, J. Geophys. Res., 106, 33021–33024, 2001.

    Google Scholar 

  • McKenzie, D., Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere, J. Petrology, 29, 625–679, 1988.

    Google Scholar 

  • Moorbath, S., Les plus anciennes roches terrestres et la croissance des continents, In La Dérive des Continents, Pour la science, Belin (eds.), 1979.

    Google Scholar 

  • Moresi, L.N., Solomatov, V.S., Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluids, 7, 2154–2162, 1995.

    Google Scholar 

  • Poirier, J-P., Physical properties of the Earth's core, C.R. Acad. Sci. Paris, 318, 341–350, 1994.

    Google Scholar 

  • Reese, C.C., Solomatov, V.S. and Moresi, L-N., Non-newtonian stagnant lid convection and magmatic resurfacing on Venus, Icarus, 139, 67–80, 1999.

    Google Scholar 

  • Safronov, V. S., The growth of terrestrial planets, Vopr. Kosmog. 6, 63, 1958.

    Google Scholar 

  • Sleep, N., Martian plate tectonics, J. Geophys. Res., 99, 5639–5655, 1994.

    Google Scholar 

  • Solomon, S. et al., Venus tectonics: an overview of Magellan observations, J. Geophys. Res., 97, 13199–13255, 1992. Sotin, C., Parmentier, E.M., Dynamical consequences of compositional and thermal density stratification beneath spreading centers, Geophys. Res. Lett., 16, 835–838, 1989.

    Google Scholar 

  • Sotin, C., Parmentier, E.M., On the stability of a fluid layer containing a univariant phase transition: Application to planetary interiors, Phys. Earth Planet. Int., 55, 10–25, 1989.

    Google Scholar 

  • Sotin, C., Labrosse, S., Thermal convection in an isoviscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles, Phys. Earth Planet. Int., 112, 171–190, 1999.

    Google Scholar 

  • Srinivasan, G., Goswani, J.N., Bhandari N., 26Al in eucrite Piplia Kalan: plausible heat source and formation chronology, Science, 284, 1348–1350, 1999.

    Google Scholar 

  • Tobie, G., Mocquet, A., Sotin, C., Tidal dissipation within large icy satellites, submitted to Icarus, 2004.

    Google Scholar 

  • Turcotte, D., Schubert, G., Geodynamics, John Wiley and Sons (eds.), 1982.

    Google Scholar 

  • Urakawa, S., Kato, M., Kumazawa, M., Experimental study on the phase relations in the system Fe-Ni-O-S up to 15 GPa, In: M.H. Manghani and Y. Syono (eds.), High Pressure Research in Mineral Physics, 95–111, Terrapub, Tokyo, 1987.

    Google Scholar 

  • Usselman, T.M., Experimental approach to the state of the core: Part 1. The liquidus relations of the Fe-rich portion of the Fe-Ni system from 30 to 1000kb, AM J. Sci., 275, 278–290, 1975.

    Google Scholar 

  • Vine, F.J., Matthews, D.H., Magnetic anomalies over ocean ridges, Nature, 199, 947–949, 1963.

    Google Scholar 

  • Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., and K. Ohtsuki, Accretional Evolution of a Planetesimal Swarm: 2. The Terrestrial Zone, Icarus, 128, 429–455, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sotin, C. (2005). Thermal Evolution of the Earth During the First Billion Years. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_6

Download citation

Publish with us

Policies and ethics