• Purificación López-García
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Madigan M. T., Martinko J. M. and Parker J. (2002). Brock Biology of Microorganisms, 10th edn. New Jersey, Prentice-Hall, Inc. Google Scholar


  1. Amann R. I., Ludwig W. and Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. Google Scholar
  2. Barns S. M., Delwiche C. F., Palmer J. D., Dawson S. C., Hershberger K. L. and Pace N. R. (1996). Phylogenetic perspective on microbial life in hydrothermal ecosystems, past and present. Ciba Found Symp. 202, 24–32; discussion 32–39. Google Scholar
  3. Blöchl E., Rachel R., Burgraff S., Hafenbradl D., Jannasch H. W. and Stetter K. O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113. Extremophiles 1, 14–21. Google Scholar
  4. Boynton W. V., Feldman W. C., Squyres S. W., Prettyman T. H., Bruckner J., Evans L. G., Reedy R. C., Starr R., Arnold J. R., Drake D. M., Englert P. A., Metzger A. E., Mitrofanov I., Trombka J. I., D'Uston C., Wanke H., Gasnault O., Hamara D. K., Janes D. M., Marcialis R. L., Maurice S., Mikheeva I., Taylor G. J., Tokar R. and Shinohara C. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 81–85. Google Scholar
  5. Brasier M. D., Green O. R., Jephcoat A. P., Kleppe A. K., Van Kranendonk M. J., Lindsay J. F., Steele A. and Grassineau N. V. (2002). Questioning the evidence for Earth's oldest fossils. Nature 416, 76–81. Google Scholar
  6. Brock T. D., Brock K. M., Belly R. T. and Weiss R. L. (1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 84, 54–68. Google Scholar
  7. Brock T. D. and Freeze H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297. Google Scholar
  8. Brown J. R. and Doolittle W. F. (1997). Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502. Google Scholar
  9. Brown J. R., Douady C. J., Italia M. J., Marshall W. E. and Stanhope M. J. (2001). Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281–285. Google Scholar
  10. Buchalo A. S., Nevo E., Wasser S. P., Oren A. and Molitoris H. P. (1998). Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc. R. Soc. Lond. B Biol. Sci. 265, 1461–1465. Google Scholar
  11. Burggraf S., Stetter K. O., Rouviere P. and Woese C. R. (1991). Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14, 346–351. Google Scholar
  12. Carr M. H., Belton M. J., Chapman C. R., Davies M. E., Geissler P., Greenberg R., McEwen A. S., Tufts B. R., Greeley R., Sullivan R., Head J. W., Pappalardo R. T., Klaasen K. P., Johnson T. V., Kaufman J., Senske D., Moore J., Neukum G., Schubert G., Burns J. A., Thomas P. and Veverka J. (1998). Evidence for a subsurface ocean on Europa. Nature 391, 363–365. Google Scholar
  13. Chapelle F. H., K, O. N., Bradley P. M., Methe B. A., Ciufo S. A., Knobel L. L. and Lovley D. R. (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315. Google Scholar
  14. Deming J. W. (1998). Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9, 283–287. Google Scholar
  15. Farlow, W. G. (1880). On the nature of the peculiar reddening of salted codfish during the summer season. U.S. Commission of Fish and Fisheries, pp. 969–974. Google Scholar
  16. Fish S. A., Shepherd T. J., McGenity T. J. and Grant W. D. (2002). Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417, 432–436. Google Scholar
  17. Fisk M. R., Giovannoni S. J. and Thorseth I. H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281, 978–980. Google Scholar
  18. Forsythe R. D. and Zimbelman J. R. (1995). A case for ancient evaporite basins on Mars. J. Geophys. Res. 100, 5553–5563. Google Scholar
  19. Forterre P. and Philippe H. (1999). Where is the root of the universal tree of life? Bioessays 21, 871–879. Google Scholar
  20. Furnes H., Muehlenbachs K., Tumyr O., Torsvik T. and Thorseth I. H. (1999). Depth of active bio-alteration in the ocean crust: Costa Rica Rift (Hole 504B). Terra Nova 11, 228–233. Google Scholar
  21. Grant W. D., Gemmell R. T. and McGenity T. J. (1998). Halobacteria: the evidence for longevity. Extremophiles 2, 279–287. Google Scholar
  22. Henley R. W. (1996). Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems. Ciba Found. Symp. 202, 61–76; discussion 76–82. Google Scholar
  23. Horikoshi K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63, 735–750, table of contents. Google Scholar
  24. Hough D. W. and Danson M. J. (1999). Extremozymes. Curr. Opin. Chem. Biol. 3, 39–46. Google Scholar
  25. Hugenholtz P., Pitulle C., Hershberger K. L. and Pace N. R. (1998). Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376. Google Scholar
  26. Kashefi K. and Lovley D. R. (2003). Extending the upper temperature limit for life. Science 301, 934. Google Scholar
  27. Kerr R. A. (2000). Planetary science. Buried channels may have fed Mars ocean. Science 287, 1727–1728. Google Scholar
  28. Kivelson M. G., Khurana K. K., Russell C. T., Volwerk M., Walker R. J. and Zimmer C. (2000). Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289, 1340–1343. Google Scholar
  29. Knauth L. P. (1992). Origin and diagenesis of cherts: An isotopic perspective. In Isotopic signatures and sedimentary records, pp. 123–152. Edited by N. Clauer and S. Chanduri. Berlin: Springer-Verlag. Google Scholar
  30. Kochkina G. A., Ivanushkina N. E., Karasev S. G., Gavrish E., Gurina L. V., Evtushenko L. I., Spirina E. V., Vorob'eva E. A., Gilichinskii D. A. and Ozerskaia S. M. (2001). Micromycetes and actinobacteria under conditions of many years of natural cryopreservation. Mikrobiologiia 70, 412–420. Google Scholar
  31. Lanoil B. D., Sassen R., La Duc M. T., Sweet S. T. and Nealson K. H. (2001). Bacteria and archaea physically associated with gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 67, 5143–5153. Google Scholar
  32. Lazcano A. and Miller S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85, 793–798. Google Scholar
  33. Lopez-Archilla A. I., Marin I. and Amils R. (2001). Microbial community composition and ecology of an acidic aquatic environment: the tinto river, Spain. Microb. Ecol. 41, 20–35. Google Scholar
  34. Madigan M. T., Martinko J. M. and Parker J. (2002). Brock Biology of Microorganisms, 10th edn. New Jersey: Prentice-Hall, Inc. Google Scholar
  35. Miller S. (1953). A production of amino acids undert possible primitive Earth conditions. Science 117, 528–529. Google Scholar
  36. Muliukin A. L., Sorokin V. V., Vorob'eva E. A., Suzina N. E., Duda V. I., Gal'chenko V. F. and El'-Registan G. I. (2002). Detection of microorganisms in the environment and the preliminary appraisal of their physiological state by X-ray microanalysis. Mikrobiologiia 71, 836–848. Google Scholar
  37. Newsom H. E., Hagerty J. J. and Thorsos I. E. (2001). Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1, 71–88. Google Scholar
  38. Nisbet E. G. and Sleep N. H. (2001). The habitat and nature of early life. Nature 409, 1083–1091. Google Scholar
  39. Oren A. (1994). The ecology of extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415–440. Google Scholar
  40. Oren A. (1999). Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348. Google Scholar
  41. Pace N. R. (1991). Origin of life–facing up to the physical setting. Cell 65, 531–533. Google Scholar
  42. Pace N. R. (1997). A molecular view of microbial diversity and the biosphere. Science 276, 734–740. Google Scholar
  43. Paerl H. W., Pinckney J. L. and Steppe T. F. (2000). Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2, 11–26. Google Scholar
  44. Pedersen K. (2000). Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 9–16. Google Scholar
  45. Rothschild L. J., Giver L. J., White M. R. and Mancinelli R. L. (1994). Metabolic activity of microorganisms in gypsum-halite crusts. J. Phycol. 30, 431–438. Google Scholar
  46. Rothschild L. J. and Mancinelli R. L. (2001). Life in extreme environments. Nature 409, 1092–1101. Google Scholar
  47. Schlesinger G. and Miller S. (1983). Prebiotic synthesis in atmospheres containing CH4, CO and CO2. I. Amino acids. J. Mol. Evol. 19, 376–382. Google Scholar
  48. Schopf J. W., Kudryavtsev A. B., Agresti D. G., Wdowiak T. J. and Czaja A. D. (2002). Laser–Raman imagery of Earth's earliest fossils. Nature 416, 73–76. Google Scholar
  49. Shi T., Reeves R. H., Gilichinsky D. A. and Friedmann E. I. (1997). Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb. Ecol. 33, 169–179. Google Scholar
  50. Siegert M. J., Ellis-Evans J. C., Tranter M., Mayer C., Petit J. R., Salamatin A. and Priscu J. C. (2001). Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–609. Google Scholar
  51. Sterflinger K. (1998). Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74, 271–281. Google Scholar
  52. Stetter K.O. (1989) Extremely thermophilic chemolithoautotrophic Archaebacteria. In H.G. Schlegel and B. Bowien (eds.), Extremely Thermophilic Chemolithoautotrophic Archaebacteria. Springer-Verlag, Berlin, pp. 167–176. Google Scholar
  53. Stetter K. O., Huber R., Blöchl E., Kurr M., Eden R. D., Fiedler M., Cash H. and Vance I. (1993). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745. Google Scholar
  54. Stetter K. O. (1996). Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158. Google Scholar
  55. Summit M. and Baross J. A. (2001). A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl. Acad. Sci. USA 98, 2158–2163. Google Scholar
  56. Summons R. (1999). Molecular probing of deep secrets. Nature 398, 752–753. Google Scholar
  57. Takami H., Inoue A., Fuji F. and Horikoshi K. (1997). Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152, 279–285. Google Scholar
  58. Wächtershäusser G. (1988). Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol. 10, 207–210. Google Scholar
  59. Weiss B. P., Yung Y. L. and Nealson K. H. (2000). Atmospheric energy for subsurface life on Mars? Proc. Natl. Acad. Sci. USA 97, 1395–1399. Google Scholar
  60. Wilansky B. (1936). Life in the Dead Sea. Nature 138, 467. Google Scholar
  61. Woese C. R. (1987). Bacterial evolution. Microbiol. Rev. 51, 221–271. Google Scholar
  62. Woese C. R. and Fox G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090. Google Scholar
  63. Woese C. R., Kandler O. and Wheelis M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579. Google Scholar
  64. Zuckerkandl E. and Pauling L. (1965). Molecules as documents of evolutionary history. J Theor. Biol. 8, 357–366. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Purificación López-García
    • 1
  1. 1.Unité d’Ecologie, Systématique et EvolutionUniversity Paris-SudOrsayFrance

Personalised recommendations