Skip to main content

From the Origin of Life on Earth to Life in the Universe

  • Chapter
  • First Online:
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmann P.A., Luisi P.L., and Lang J. (1992). Autocatalytic self-replicating micelles as models for prebiotic structures. Nature, 357, 57–59.

    Google Scholar 

  • Bailey J., Chrysostomou A., Hough J.H., Gledhill T.M., McCall A., Clark S., Ménard F, and Tamura M (1998). Circular polarization in star formation regions: Implications for biomolecular homochirality. Science, 281, 672–674.

    Google Scholar 

  • Bailey J. (2001). Astronomical sources of circularly polarized light and the origin of homochirality. Origins Life Evol. Biosphere, 31, 167–183.

    Google Scholar 

  • Barbier B., Chabin A., Chaput D., and Brack A. (1998). Photochemical processing of amino acids in Earth orbit. Planet. Space Sci., 46, 391–398.

    Google Scholar 

  • Baross J.A. and Hoffman S.E. (1985). Submarine hydrothermal vents and associated gradient environment as sites for the origin and evolution of life. Origins Life Evol. Biosphere, 15, 327–345.

    Google Scholar 

  • Beaumont V. and Robert F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmospheric chemistry? Precambrian Res., 96, 63–82.

    Google Scholar 

  • Boillot F., Chabin A., Buré C, Venet M., Belsky A., Bertrand-Urbaniak M., Delmas A., Brack A., and Barbier B. (2002). The Perseus exobiology mission on MIR: behaviour of amino acids and peptides in Earth orbit. Origins Life Evol. Biosphere, 32, 359–385.

    Google Scholar 

  • Boynton W.V. et al. (2002). Distribution of hydrogen in the near surface of mars: evidence for subsurface ice deposits. Science, 297, 81–85.

    Google Scholar 

  • Brack A. (1993). From amino acids to prebiotic active peptides: a chemical reconstitution. Pure & Appl. Chem., 65, 1143–1151.

    Google Scholar 

  • Brack A., Baglioni P., Borruat G., Brandstätter F., Demets R., Edwards H.G.M., Genge M., Kurat G., Miller M.F., Newton E.M., Pillinger C.T., Roten C.-A., and Wäsch E. (2002). Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE. Planet. Space Science, 50, 763–772.

    Google Scholar 

  • Brack A. and Pillinger C. (1998). Life on Mars: chemical arguments and clues from Martian meteorites. Extremophiles, 2, 313–319.

    Google Scholar 

  • Brack A., Fitton F., and Raulin F. (1999). Exobiology in the Solar System & the search for life on Mars. ESA Special Publication SP 1231, ESA Pub. Noordwijk, The Netherlands.

    Google Scholar 

  • Bradley J.P., Harvey R.P., and McSween H.Y. (1997). No ``nanofossils" in martian meteorite, Nature, 390, 454.

    Google Scholar 

  • Brasier M.D., Green O.R., Jephcoat A.P., Kleppe A.K., van Kranendonk M., Lindsay J.F., Steele A., and Grassineau N. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–81.

    Google Scholar 

  • Briggs R., Ertem G., Ferris J.P., Greenberg J.M., McCain P.J., Mendoza-Gomez C.X., and Schutte W. (1992). Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins Life Evol. Biosphere, 22, 287–307.

    Google Scholar 

  • Brochier C. and Philippe H. (2002). A non-hyperthermophilic ancestor for bacteria. Nature, 417, 244.

    Google Scholar 

  • Carr M.H. et al. (1998). Evidence for a subsurface ocean on Europa. Nature, 391, 363–365.

    Google Scholar 

  • Charlou J.L., Fouquet Y., Bougault H., Donval J.P., Etoubleau J., Jean-Baptiste Ph., Dapoigny A., Appriou P., and Rona P.S. (1998). Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of 1520 N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 62, 2323–2333.

    Google Scholar 

  • Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., and Garrel L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, Nature, 414, 879–883.

    Google Scholar 

  • Cronin J.R. and Pizzarello S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951–955.

    Google Scholar 

  • De Duve C. (1998). Possible starts for primitive life. Clues from present-day biology: the thioester world, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, p. 219–236, Cambridge University Press, Cambridge.

    Google Scholar 

  • Deamer D.W. (1998). Membrane compartments in prebiotic evolution, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, p. 189–205, Cambridge University Press, Cambridge.

    Google Scholar 

  • Eschenmoser A. (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124.

    Google Scholar 

  • Galtier N., Tourasse N., and Gouy N. (1999). A non hyperthermophilic common ancestor to extant life forms. Science, 283, 220–221.

    Google Scholar 

  • Holm N. and Charlou J.L. (2000). Indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid Atlantic Ridge, Earth Planet. Sci. Lett., 191, 1–8.

    Google Scholar 

  • Holm N.G. and Andersson E.M. (1995). Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal systems: a perspective. Planet. Space Sci., 43, 153–159.

    Google Scholar 

  • Holm N.G. and Andersson E.M. (1998). Organic molecules on the early Earth: hydrothermal systems. in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, p. 86–99, Cambridge University Press, Cambridge.

    Google Scholar 

  • Horneck G. (1999). European activities in exobiology in Earth orbit: Results and perspectives. Adv. Space Res., 23, 381–386.

    Google Scholar 

  • Horneck G., Stöffler D., Eschweiler U., and Hornemann U. (2001). Bacterial spores survive simulated meteorite impact. Icarus, 149, 285–193.

    Google Scholar 

  • Huber C. and Wächtershäuser G. (1997). Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science, 276, 245–247.

    Google Scholar 

  • Imai E.-I., Honda H., Hatori K., Brack A., and Matsuno K. (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283,831–833.

    Google Scholar 

  • Jet Propulsion Laboratory/NASA: Mars Meteorites (2003). http://www.jpl.nasa.gov/snc/

    Google Scholar 

  • Kivelson M.G., Khurana K.K., Russel C.T., Volwerk M., Walker R.J., and Zimmer C. (2000). Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343.

    Google Scholar 

  • Lebreton J.P. (ed.) (1997). Huygens: Science Payload and Mission. ESA-SP 1177, ESA Pub. Noordwijk, The Netherlands.

    Google Scholar 

  • Luther A., Brandsch R., and von Kiedrowski G. (1998). Surface-promoted replication and exponential amplification of DNA analogues. Nature, 396, 245–248.

    Google Scholar 

  • Maurette M. (1998). Carbonaceous micrometeorites and the origin of life. Origins Life Evol. Biosphere, 28, 385–412.

    Google Scholar 

  • Mayor M.D. and Queloz D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359.

    Google Scholar 

  • McKay D.S., Gibson E.K., Thomas-Keprta K.L., Vali H., Romanek C.S., Clemett S.J., Chellier X.D.F., Maechling C.R., and Zare R.N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH 84001. Science, 273, 924–930.

    Google Scholar 

  • Mileikowsky C., Cucinotta F., Wilson J.W., Gladman B., Horneck G., Lindegren, Melosh J., Rickman H., Valtonen M., and Zheng J.Q. (2000). Natural transfer of viable microbes in space, Part 1: From Mars to Earth and Earth to Mars. Icarus, 145,391–427.

    Google Scholar 

  • Miller S.L. (1953). The production of amino acids under possible primitive Earth conditions. Science, 117, 528–529.

    Google Scholar 

  • Miller S.L. and Bada J.L. (1988). Submarine hot springs and the origin of life. Nature, 334, 609–611.

    Google Scholar 

  • Mojzsis S.J., Arrhenius G., McKeegan K.D., Harrison T.M., Nutman A.P., and Friend C.R.L. (1996). Evidence for life on Earth before 3800 million years ago. Nature, 384, 55–59.

    Google Scholar 

  • Munoz Caro G.M., Meierhenrich U.J., Schutte W.A., Barbier B., Arcones Segovia A., Rosenbauer H., Thiemann W.H.-P., Brack A., and Greenberg J.M. (2002). Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403–405.

    Google Scholar 

  • Orgel L.E. (1998). Polymerization on the rocks: Theoretical introduction. Origins Life Evol. Biosphere, 28, 227–234.

    Google Scholar 

  • Parkes R.J., Cragg B.A., and Wellsbury P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol. J., 8, 11–28.

    Google Scholar 

  • Raulin F. (1998). Titan, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, p. 365–385, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rosing M.T. (1999). 13C depleted carbon microparticles in > 3700 Ma seafloor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Google Scholar 

  • Schidlowski M. (1988). A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

    Google Scholar 

  • Schneider J. (2003). http://www.obspm.fr/encycl/f-encycl.html.

    Google Scholar 

  • Schopf J.W. (1993). Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646

    Google Scholar 

  • SETI http://www.seti-inst.edu/

    Google Scholar 

  • Stetter K.O. (1998). Hyperthermophiles and their possible role as ancestors of modern life. in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, p. 315–335, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Stoks P.G. and Schwartz A.W. (1982). Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta, 46, 309–315.

    Google Scholar 

  • Van Zuilen M., Lepland A., and Arrhenius G. (2002). Abiogenic and biogenic graphite in the Isua Supracrustal belt. In Isua Multidisciplinary Study Workshop, Berlin, Jan 2002, Danish Geol. Surv. Copenhagen, p. 73–74.

    Google Scholar 

  • Wächtershäuser G. (1998). Origin of life in an iron-sulfur world, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, (ed.) A Brack, pp. 206–218, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weber P. and Greenberg J.M. (1985). Can spores survive in interstellar space? Nature, 316, 403–407.

    Google Scholar 

  • Westall F., Gobbi P., Mazzotti G., Gerneke D., Stark R., Dobrek T., and Heckl W. (1998). Combined SEM (secondary electrons, backscatter, cathodoluminescence) and atomic force microscope investigation of the carbonate globules in Martian meteorite ALH84001: Preliminary results, SPIE, Instruments, Methods and Missions for Astrobiology, 3114, 225–233.

    Google Scholar 

  • Westall F., De Wit M.J., Dann J., Van Der Gaast S., De Ronde C., and Gerneke D. (2001). Early Archaean fossil bacteria and biofilms in hydrothermally-influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Res., 106, 93–116.

    Google Scholar 

  • Yanagawa H. and Kobayashi K. (1992). An experimental approach to chemical evolution in submarine hydrothermal systems. Origins Life Evol. Biosphere, 22, 147–159.

    Google Scholar 

  • Zimmer C., Khurana K.K., and Kivelson M.G. (2000). Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus, 147, 329–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brack, A. (2005). From the Origin of Life on Earth to Life in the Universe. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_1

Download citation

Publish with us

Policies and ethics