Skip to main content

The RNA World: Hypotheses, Facts and Experimental Results

  • Chapter
  • First Online:
Lectures in Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachellerie J.P., Cavaillé J., Hüttenhofer A. (2002). The expanding snoRNA world. Biochimie, 84, 775–790.

    Google Scholar 

  • Ban N., Nissen P., Hansen J., Moore P.B., Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4,Ã… resolution. Science, 289, 905–920.

    Google Scholar 

  • Barends S., Bink H.H.J., van den Worm S.H.E., Pleij C.W.A., Kraal B. (2003). Entrapping ribosomes for viral translation: tRNA mimicry as a molecular trojan horse. Cell, 112, 123–129.

    Google Scholar 

  • Bartel D.P., Unrau P.J. (1999). Constructing an RNA world. Trends Biochem. Sci., 24, 9–13.

    Google Scholar 

  • Benner S.A., Ellington A.D., Tauer A. (1989). Modern metabolism as a pa­lim­psest of the RNA world. Proc. Natl. Acad. Sci. USA, 86, 7054–7058.

    Google Scholar 

  • Benner S.A., Cohen M.A., Gonnet G.H., Berkowitz D.B., Johnson K.P. (1993). Reading the palimpsest: contemporary biochemical data and the RNA World, in The RNA World, eds. Gesteland R.F., Atkins J.F., p. 27–70, Cold Spring Harbor Laboratory Press: Cold Spring Harbor NY.

    Google Scholar 

  • Cairns-Smith A.G. (1966). The origin of life and the nature of the primitive gene. J. Theor. Biol., 10, 53–88.

    Google Scholar 

  • Cairns-Smith A.G. (1982). Genetic Takeover and the Mineral Origins of Life, Cambridge University Press, Cambridge.

    Google Scholar 

  • Cermakian N., Cedergren, R. (1998). Modified nucleosides always were: an evolutionary model, in Modification and Editing of RNA, ed. Grosjean H., Benne R., p. 535–541, ASM Press, Washington, D.C.

    Google Scholar 

  • Chaput J.C., Szostak J.W. (2003). TNA synthesis by DNA polymerase. J. Am. Chem. Soc., 125, 9274–9275.

    Google Scholar 

  • Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., Garrel L. (2001). Sugar-related organic compounds in carbonaceous meteorites. Nature, 414, 879–883.

    Google Scholar 

  • Crick F.H. (1968). The origin of the genetic code. J. Mol. Biol., 38, 367–379.

    Google Scholar 

  • Décout J-L., Vergne J., Maurel M-C. (1995). Synthesis and catalytic activity of adenine containing polyamines. Macromol. Chem. Phys., 196, 2615–2624.

    Google Scholar 

  • Diener TO. (2001). The viroid: biological oddity or evolutionary fossil? Adv. Virus. Res. 57, 137–184.

    Google Scholar 

  • Eddy S.R. (2001). Non-coding RNA genes and the modern RNA world. Nature Reviews Genetic, 2, 919–929.

    Google Scholar 

  • Egholm M., Buchardt O., Christensen L., Behrens C., Freier S.M., Driver D.A., Berg R.H., Kim S.K., Norden B., Nielsen P.E. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature, 365, 566–568.

    Google Scholar 

  • Ellington A.D., Szostak J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

    Google Scholar 

  • Eschenmoser A. (1994). Chemistry of potentially prebiological natural products. Origins Life Evol. Biosphere, 24, 389–423.

    Google Scholar 

  • Eschenmoser A. (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124.

    Google Scholar 

  • Fechter P., Rudonger-Thirion J., Florentz C., Giegé R. (2001). Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life. Sci. 58, 1547–1561.

    Google Scholar 

  • Ferris J.P. (1987). Prebiotic synthesis: problems and challenges Cold Spring Harbor Symp. Quant. Biol., LII, 29–39.

    Google Scholar 

  • Ferris J.P., Ertem G. (1992). Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′ phosphorimidazolide of adenosine. Science, 257, 1387–1389.

    Google Scholar 

  • Ferris J.P., Hill A.R., Liu R., Orgel L.E. (1996). Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381, 59–61.

    Google Scholar 

  • Fuller W.D., Sanchez R.A., Orgel L.E. (1972). Studies in prebiotic synthesis. J. Mol. Biol., 67, 25–33.

    Google Scholar 

  • Gesteland R.F., Cech T.R., Atkins J.F. (eds.) (1999). The RNA World, second edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Gilbert W. (1986). The RNA world. Nature, 319, 618.

    Google Scholar 

  • Green R., Lorsch J.R. (2002). The path to perdition is paved with protons. Cell, 110, 665–668.

    Google Scholar 

  • Grosjean H., Benne R. (eds.) (1998). Modification and Editing of RNA, ASM Press, Washington, D.C.

    Google Scholar 

  • Grosshans H., Slack F.J. (2002). Micro-RNAs: small is plentiful. J. Cell Biol., 156, 17–21.

    Google Scholar 

  • Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.

    Google Scholar 

  • Hill A.R., Orgel L.E., Wu T. (1993). The limits of template-directed synthesis with nucleoside-5′-phosphoro (2-methyl) imidazolides. Orig. Life Evol. Biosphere, 23, 285–290.

    Google Scholar 

  • Illangasekare M., Yarus M. (1997). Small-molecule substrate interactions with a self aminoacylating ribozyme. J. Mol. Evol., 54, 298–311.

    Google Scholar 

  • Inoue T., Orgel L.E. (1983). A non-enzymatic RNA polymerase model. Science, 219, 859–862.

    Google Scholar 

  • Jacob F. (1970). La Logique du Vivant, Gallimard, Paris.

    Google Scholar 

  • Jadahv V.R., Yarus M. (2002). Coenzymes as coribozymes. Biochimie, 84, 877–888.

    Google Scholar 

  • Johnston W.K., Unrau P.J., Lawrence M.S., Glasner M.E., Bartel D.P. (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292, 1319–1325.

    Google Scholar 

  • Joyce G.F., Orgel L.E. (1986). Non-enzymic template-directed synthesis on RNA random copolymers: poly (C,G) templates. J. Mol. Biol., 188, 433–441.

    Google Scholar 

  • Joyce G.F., Schwartz A.W., Miller S.L., Orgel L.E. (1987). The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA, 84, 4398–4402.

    Google Scholar 

  • Joyce G.F. (1989). RNA evolution and the origins of life. Nature, 338, 217–224.

    Google Scholar 

  • Joyce G.F., Orgel L.E. (1999). Prospects for understanding the origin of the RNA world, in The RNA World, eds. Gesteland R.F., Cech T.R., Atkins J.F. p. 49–77, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.

    Google Scholar 

  • Joyce G.F. (2002). The antiquity of RNA-based evolution. Nature, 418, 214–221.

    Google Scholar 

  • Kable M.L., Heidmann S., Stuart K.D. (1997). RNA editing: getting U into RNA. Trends Biochem. Sci., 22, 162–166.

    Google Scholar 

  • Kong L.B., Siva A.C., Kickhoefer V.A., Rome L.H., Stewart P.L. (2000). RNA location and modeling of a WD40 repeat domain within the vault. RNA, 6, 890–900.

    Google Scholar 

  • Koppitz M., Nielsen P.E., Orgel L.E. (1998). Formation of oligonucleotide-PNA-chimeras by template-directed ligation. J. Am. Chem. Soc., 120, 4563–4569.

    Google Scholar 

  • Kozlov I., Politis P.K., Pitsch S., Herdewijn P., Orgel L.E. (1999a). A highly enantio-selective hexitol nucleic acid template for nonenzymatic oligoguanylate synthesis. J. Am. Chem. Soc., 121, 1108–1109.

    Google Scholar 

  • Kozlov I., De Bouvere B., Van Aerschot A. Herdewijn P., Orgel L.E. (1999b). Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization. J. Am. Chem. Soc., 121, 5856–5859.

    Google Scholar 

  • Kozlov I., Politis P.K., Van Aerschot A. Busson R., Herdewijn P., Orgel L.E. (1999c). Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of A structure. J. Am. Chem. Soc., 121, 2653–2656.

    Google Scholar 

  • Kozlov I., Zielinski M., Allart B., Kerremans L., Van Aerschot A, Busson R., Herdewijn P., Orgel L.E. (2000). Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides. Chem. Eur. J., 6, 151–155.

    Google Scholar 

  • Kramer F.R., Mills D.R., Cole P.E., Nishihara T., Spiegelman S. (1974). J. Mol. Biol., 89, 719–736.

    Google Scholar 

  • Lafontaine D.L., Tollervey D. (1998). Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci., 83, 383–388.

    Google Scholar 

  • Lamond A.I. (1988). RNA editing and the mysterious undecovered genes of trypanosomatid mitochondria. Trends Biochem. Sci., 13, 283–284.

    Google Scholar 

  • Maizels N., Weiner A.M., Yue D., Shi P.Y. (1999). New evidence for the genomic tag hypothesis: archaeal CCA-adding enzymes and DNA substrates. Biol. Bull., 196, 331–333.

    Google Scholar 

  • Mattick J.S. (2003). Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays, 25, 930–939.

    Google Scholar 

  • Maurel M.-C., Ninio J. (1987). Catalysis by a prebiotic nucleotide analog of histidine. Biochimie, 69, 551–553.

    Google Scholar 

  • Maurel M.-C. (1992). RNA in evolution. J. Evol. Biol., 2, 173–188.

    Google Scholar 

  • Maurel M.-C., Décout J.-L. (1999). Origins of life: molecular foundations and new approaches. Tetrahedron, 55, 3141–3182.

    Google Scholar 

  • Maurel M.-C., ZaccaG. (2001). Why Biologists should support the exploration of Mars. BioEssays, 23, 977–978.

    Google Scholar 

  • McGinness K.E., Wright M.C., Joyce G.F. (2002). Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem. Biol., 9, 585–596.

    Google Scholar 

  • Meli M., Albert-Fournier B., Maurel M.-C. (2001). Recent findings in the modern RNA world. Int. Microbiol. 4, 5–11.

    Google Scholar 

  • Meli M., Vergne J., Décout J.-L., Maurel M.-C. (2002). Adenine-aptamer complexes. A bipartite RNA site which binds the adenine nucleic base. J. Biol. Chem., 277, 2104–2111.

    Google Scholar 

  • Meli M., Vergne J., Maurel M.-C. (2003). In vitro selection of adenine-dependent hairpin ribozymes. J. Biol. Chem., 278, 9835–9842.

    Google Scholar 

  • Muth G.W., Ortoleva-Donnelly L., Strobel S.A. (2000). A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science, 289, 947–950.

    Google Scholar 

  • Muth G.W., Chen L., Kosek A.B., Strobel S.A. (2001). PH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA, 7, 1403–1415.

    Google Scholar 

  • Neunlist S., Bisseret P., Rohmer M. (1987). The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. Eur. J. Biochem., 87, 245–252.

    Google Scholar 

  • Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289, 920–930.

    Google Scholar 

  • Nykanen A., Haley B., Zamore P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321.

    Google Scholar 

  • Orgel L.E. (1968). Evolution of the genetic apparatus. J. Mol. Biol., 38, 381–393.

    Google Scholar 

  • Orgel L.E. (1989). Was RNA the first genetic polymer? in Evolutionary Tinkering in Gene Expression eds. M. Grunberg-Manago et al., p. 215–224, Plenum Press, London.

    Google Scholar 

  • Orgel L.E. (1992). Molecular replication. Nature, 358, 203–209.

    Google Scholar 

  • Orò J. (1960). Biochem. Biophys. Res. Comm., 2, 407–412.

    Google Scholar 

  • Paecht-Horowitz M., Berger J., Katchalsky A. (1970). Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates. Nature, 7, 847–850.

    Google Scholar 

  • Reader J.S., Joyce G.F. (2002). A ribozyme composed of only two different nucleotides. Nature, 420, 841–844.

    Google Scholar 

  • Ricard J., Vergne J., Décout J.-L., Maurel M.-C. (1996). The origin of kinetic cooperativity in prebiotic catalysts. J. Mol. Evol., 43, 315–325.

    Google Scholar 

  • Schmidt J.G., Nielsen P.E., Orgel L.E. (1997). Information transfer from peptide nucleic acid RNA by template-directed syntheses. Nucl. Acids Res., 25, 4797–4802.

    Google Scholar 

  • Schöning K.-U., Scholz P., Guntha S., Wu X., Krishnamurthy R., Eschenmoser A. (2000). Chemical etiology of nucleic acid structure: the α-threo-furanosyl-(3'2') oligonucleotide system. Science, 290, 1347–1351.

    Google Scholar 

  • Spiegelman S. (1971). An in vitro analysis of a replicating molecule. Quaterly Review Biophys., 4, 213–253.

    Google Scholar 

  • Stuart K., Panigrahi A.K. (2002). RNA editing: complexity and complications. Mol. Microbiol., 45, 591–596.

    Google Scholar 

  • Sutherland J.D., Whitfield J.N. (1997). Prebiotic chemistry: a bioorganic perspective. Tetrahedron, 53, 11493–11527.

    Google Scholar 

  • Tarn W.Y., Steitz J.A. (1997). Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem. Sci., 22, 132–137.

    Google Scholar 

  • Tehei M., Franzetti B., Maurel M.-C., Vergne J., Hountondji C., ZaccaG. (2002). Salt and the search for traces of life. Extremophiles, 6, 427–430.

    Google Scholar 

  • Terns M.P., Terns R.M. (2002). Small nucleolar RNAs: versatile transacting molecules of ancient evolutionary origin. Gene Expr., 10, 17–39.

    Google Scholar 

  • Tuerk, C., Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.

    Google Scholar 

  • Valle M., Gillet R., Kaur S., Henne A., Ramakrishnan V., Frank J. (2003). Visualizing tmRNA entry into a stalled ribosome. Science, 300, 127–130.

    Google Scholar 

  • Wächtershäuser G. (1988). An all-purine precursor of nucleic acids. Proc. Natl. Acad. Sci. USA, 85, 1134–1135.

    Google Scholar 

  • Westhof E. (2002). Foreword. Biochimie, 84, 687–689.

    Google Scholar 

  • White H.B. (1976). Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol., 7, 101–104.

    Google Scholar 

  • Wild K., Weichenrieder O., Strub K., Sinning I., Cusack S. (2002). Towards the structure of the mammalian signal recognition particle. Curr. Opinion Struct. Biol., 12, 72–81.

    Google Scholar 

  • Wilson D.S., Szostak J.W. (1999). In vitro selection of functional nucleic acids. Annu. Rev. Biochem., 68, 611–647.

    Google Scholar 

  • Withey J.H., Friedman D.I. (2002). The biological roles of trans-translation. Curr. Opinion Microbiol., 5, 154–159.

    Google Scholar 

  • Woese C.R. (1965). On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA, 54, 1546–1552.

    Google Scholar 

  • Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. (2001). Crystal Structure of the Ribosome at 5.5,resolution. Science, 292, 883–896.

    Google Scholar 

  • Zamore P.D. (2002). Ancient Pathways Programmed By Small RNAs. Science, 296, 1265–1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maurel, MC., Haenni, AL. (2005). The RNA World: Hypotheses, Facts and Experimental Results. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_17

Download citation

Publish with us

Policies and ethics