Skip to main content

Peptide Emergence, Evolution and Selection on the Primitive Earth

II. The Primary Pump Scenario

  • Chapter
  • First Online:
  • 1548 Accesses

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

We propose a dynamic scenario for the emergence and evolution of peptides on the primitive Earth, through a molecular engine (the primary pump), which works at ambient temperature and continuously generates, elongates and complexifies sequential peptides. This new scenario is based on a cyclic chemical reaction sequence that could have taken place on tidal beaches; it requires a buffered ocean, emerged land and a nitrosating atmosphere. We show that the primitive Earth during the Hadean may have satisfied all of these requirements. This scenario is not necessarily what actually happened, but it represents a global approach of peptide prebiotic synthesis, and most of its parts are accessible to experiment. As it develops, it may open up a gateway to the emergence of homochirality and the catalytic activities of peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett PD, Dittmer DC (1957). A kinetic study of the Leuchs anhydrides in aqueous solution. II. J. Am. Chem. Soc. 79: 2159–2161.

    Google Scholar 

  • Bartlett PD, Jones RH (1957). A kinetic study of the Leuchs anhydrides in aqueous solution. I. J. Am. Chem. Soc. 79: 2153–2159.

    Google Scholar 

  • Bengston M, Edstrom ED (1999). A new method for testing models of prebiotic peptide assembly. In: Advances in BioChirality, Pályi G, Zucchi C and Caglioti L (eds), Elsevier. pp 115–123.

    Google Scholar 

  • Blair NE, Bonner WA (1980). Experiments on the amplification of optical activity. Origin of Life and Evolution of the Biosphere 10: 255–263.

    Google Scholar 

  • Blair NE, Bonner WA (1981). A model for the enantiomeric enrichment of polypeptides on the primitive Earth. Origin of Life 11: 331–335.

    Google Scholar 

  • Bohler C, Hill AR, Orgel LE (1996). Catalysis of the oligomerization of o-phospho-serine aspartic acid, or glutamic acid by cationic micelles. Origins of Life and Evolution of the Biosphere 26: 2–5.

    Google Scholar 

  • Bowring SA, Williams IS (1999). Priscoan (7,00–4,03 Ga) orthogneisses from northwestern Canada. Contribution to Mineralogy and Petrology 134: 3–16.

    Google Scholar 

  • Caldeira K, Kasting JF (1992). Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359: 226–228.

    Google Scholar 

  • Carbary JF, Morrison D, Romick GJ, Yee JH (2003). Leonid meteor spectrum from 110 to 860 nm. Icarus 161: 223–234.

    Google Scholar 

  • Chyba CF (1990). Impact delivery and erosion of planetary oceans in the early inner solar system. Nature 343: 129–133.

    Google Scholar 

  • Collet H, Boiteau L, Taillades J, Commeyras A (1999). Solid phase decarbamoylation of N-carbamoylpeptides and monoalkylureas using gaseous NOx: a new simple deprotection reaction with minimum waste. Tetrahedron Letters 40: 3355–3358.

    Google Scholar 

  • Collet H, Bied C, Mion L, Taillades J, Commeyras A (1996). A new simple and quantitative synthesis of α-Aminoacid-N-Carboxyanhydrides. Tetrahedron Letters 37: 9043–9046.

    Google Scholar 

  • Commeyras A, Collet H, Boiteau L, Taillades J, Vandenabeele-Trambouze O, Cottet H, Biron J-P, Plasson R, Mion L, Lagrille O, Martin H, Selsis F, Dobrijevic M (2002). Prebiotic Synthesis of Sequential Peptides on the Hadean Beach by a Molecular Engine Working with Nitrogen Oxides as Energy Sources. Polymer International 51: 661–665.

    Google Scholar 

  • Commeyras A, Taillades J, Collet H, Mion L, Boiteau L, Trambouze-Vanden­abeele O, Cottet H, Biron JP, Schué F, Giani O, Lagrille O, Plasson R, Vayaboury W, Martin H, Selsis F, Dobrijevic M, Geffard M (2001). La Terre, matrice de la Vie: émergence avant-gardiste des peptides sur les plages de l'Hadéen. In: L'environnement de la Terre Primitive, Gargaud M, Despois D, Parisot JP (eds.), Presses Universitaires de Bordeaux, pp 361–380.

    Google Scholar 

  • Commeyras A, Taillades J, Collet H, Boiteau L, Pascal R, Vanden­abeele-Trambouze O, Pascal R, Rousset A, Garrel L, Rossi JC, Cottet H, Biron JP, Lagrille O, Plasson R, Souaid E, Selsis F, Dobrijevic M (2003). Approche dynamique de la synthèse des peptides et de leurs précurseurs sur la Terre primitive. In: Les Traces du Vivant, Gargaud M, Despois D, Parisot JP (eds.). Presses Universitaires de Bordeaux, Bordeaux, France, pp 115–162.

    Google Scholar 

  • De Duve C (1998). Clues from present-day biology: the thioester world. In: The Molecular Origin of Life, Brack A (ed.), Cambridge University Press. Cambridge, UK, pp 219–236.

    Google Scholar 

  • Fox SW, Dose H (1977). Molecular Evolution, New York, Academic Press. New York, (USA).

    Google Scholar 

  • Gesteland RF, Cech TR, Athins JF (1999). The RNA Word. 2nd edition, Cold Spring Harbor Laboratory Press. New York (USA).

    Google Scholar 

  • Gilbert W (1986). The RNA World. Nature 319: 618.

    Google Scholar 

  • Guinan E, Ribas I (2002). Our changing Sun: the role of solar nuclear evolution and magnetic activity on Earth's atmosphere and climate. ASP Conference Series, 269: 85–106.

    Google Scholar 

  • Huber C, Wächtershäuser G (1998). Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science 281: 670–672.

    Google Scholar 

  • Idelson M, Blout ER (1958). Polypeptides. XVIII. A kinetic study of the polymerisation of amino acid N-carboxyanhydrides initiated by strong bases. J. Am. Chem. Soc. 79: 2387–2393.

    Google Scholar 

  • Jenniskens P, Wilson MA, Packan D, Laux CO, Krüger CH, Boyd ID, Popova OP, Fonda M (2000). Meteors: A delivery mechanism of organic matter to the early Earth. Earth, Moon and Planets 82/83: 57–70.

    Google Scholar 

  • Joyce GF, Orgel LE (1999). Prospects for understanding the origin of the RNA world. In: The RNA World. 2nd edn, Cold Spring Harbor Laboratory Press (New York), pp 49–77.

    Google Scholar 

  • Kasting JF (1993). Earth's early atmosphere. Science 259: 920–926.

    Google Scholar 

  • Kasting JK, Catling D (2003). Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics 41: 429–463.

    Google Scholar 

  • Kauffman SA (1993). The Origin of Order. Self-organisation and Selection in Evolution, 1st edn. Oxford University Press (see especially Chap. 7).

    Google Scholar 

  • Lagrille O (2001). Nitrosation de N-Carbamoylaminoacides Solides par le mélange gazeux NO/O2. Synthèse de N-Carboxyanhydrides (Anhydrides de Leuchs). PhD thesis, Université de Montpellier 2 (France).

    Google Scholar 

  • Lagrille O, Taillades J, Boiteau L, Commeyras A (2002). N-Carbamoyl Derivatives and their nitrosation by gazeous NOx –A new promissing tool in stepwise peptide synthesis. Eur. J. Org. Chem: 1026–1032.

    Google Scholar 

  • Lahav N, Wite DH, Chang S (1978). Peptide formation in the prebiotic Era: thermal condensation of glycine in fluctuating clay environments. Science 201: 67–69.

    Google Scholar 

  • Liu R, Orgel LE (1998). Polymerization of β-amino acids in aqueous solution. Orig. Life Evol. Biosphere 28: 47–60.

    Google Scholar 

  • Luisi PL (2000). L'assemblage des macromolécules. La Recherche 336: 25–29.

    Google Scholar 

  • Luisi PL, Walde P, Blocher M, Liu D (2000). Research on the origin of Life: membrane-assisted polycondensations of amino acids and peptides. Chimia 54: 52–53.

    Google Scholar 

  • Lundberg RD, Doty P (1957). Polypeptides. XVII. A Study of the Kinetics of the Primary Amine-initiated Polymerisation of N-carboxy-anhydrides with special reference to configurational and stereochemical effects. J. Am. Chem. Soc. 78: 3961–3972.

    Google Scholar 

  • Martin H (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14: 753–756.

    Google Scholar 

  • Martin H (1987). Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology 28: 921–953.

    Google Scholar 

  • McCulloch MT, Bennet VC (1993). Evolution of the early Earth: constraints from 143Nd-142Nd isotopic systematics. Lithos 30: 237–255.

    Google Scholar 

  • Mojzsis SJ, Krishnamurthy R, Arrhenius G (1999). Before RNA and after: Geophysical and geochemical constraints on molecular evolution. In: The RNA Word 2nd edn. Gesteland RF, Cech TR and Athins JF (eds.), Cold Spring Harbor Laboratory Press, pp 1–47.

    Google Scholar 

  • Mojzsis SJ, Harrison MT, Pidgeon RT (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409: 178–181.

    Google Scholar 

  • Morrison D, Chapman CR, Slovic P (1994). The impact hazard. In: Hazards due to Comets and Asteroids, Gehrels T, Matthews MS and Schumann A (eds.). Univ. Arizona Press, Tucson, USA, pp 59–92.

    Google Scholar 

  • Munoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Arcone Segovia A, Rosenbauer H, Thiemann WHP, Brack A, Greenberg GM (2002). Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416: 403–406.

    Google Scholar 

  • Navarro-Gonzalez R, Molina MJ, Molina LT (1998). Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett. 25: 3123–3126.

    Google Scholar 

  • Navarro-Gonzalez R, McKay CP, Nna Mvondo D (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412: 61–64.

    Google Scholar 

  • Nicolis G, Prigogine I (1977). Self-organization in Nonequilibrium Systems. Wiley & Sons. New York (USA).

    Google Scholar 

  • Orgel LE (1989). The origin of polynucleotide-directed protein synthesis. J. Mol. Evol. 29: 465–474.

    Google Scholar 

  • Orgel LE (1998). Polymerization on the rocks: Theoretical introduction. Origins of Life and Evolution of the Biosphere 28: 227–237.

    Google Scholar 

  • Paecht-Horowitz M, Eirich FR (1988). Origins of Life and Evolution of the Biosphere 18: 359.

    Google Scholar 

  • Pascal R (2003). Catalysis by induced intramolecularity: what can be learned by mimicking enzymes with carbonyl compounds that covalently bind substrates? Eur. J. Org. Chem.: 1813–1824.

    Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000). Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105: 11981–11990.

    Google Scholar 

  • Pizzarello S, Cronin JR (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Géochimica Cosmochemica Acta 64: 329–338.

    Google Scholar 

  • Plasson R, Biron JP, Cottet H, Commeyras A, Taillades J (2002). Kinetic study of α-aminoacids N-carboxyanhydrides polymérisation in aqueous solution using capillary electrophoresis. J. Chrom. A 952: 239–248.

    Google Scholar 

  • Plasson R. (2003). Origine moléculaire de la vie: étude de la polymérisation de aminoacides N-carboxyanhydrides dans des conditions prébiotiques, par électrophorèse capillaire. PhD thesis, Université de Montpellier 2 (France).

    Google Scholar 

  • Prinn RG, Fegley B (1987). Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters 83: 1–4.

    Google Scholar 

  • Rode BM, Eder AH, Yongyai Y (1997). Amino acid sequence preferences of the salt-induced peptide formation reaction in comparison to archaic cell protein composition. Inorganica Chemica Acta 254:309–314.

    Google Scholar 

  • Rohlfing DL (1976). Thermal polyamino acids: synthesis at less than 100. Science 193: 68–69.

    Google Scholar 

  • Rosenqvist J, Chassefière E (1995). Inorganic chemistry of O2 in a dense primitive atmosphere. Planet. Space Sci. 43: 3–10.

    Google Scholar 

  • Selsis F (2000). Modèle d'évolution physico-chimique des atmosphères de planètes telluriques. Application à l'atmosphère primitive terrestre et aux planètes extrasolaires. PhD thesis, Université Bordeaux 1, France.

    Google Scholar 

  • Selsis F, Despois D, Parisot J-P (2002). Signature of life on exoplanets: Can Darwin produce false positive detections? Astronomy and Astrophysics 388: 985–1003.

    Google Scholar 

  • Shimoyama A, Ogasawara R (2002). Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites. Orig. Life Evol. Biosphere 32: 165–179.

    Google Scholar 

  • Sleep NH, Zahnle K (2001). Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research 106: 1373–1399.

    Google Scholar 

  • Taillades J, Collet H, Garrel L, Beuzelin I, Boiteau L, Choukroun H, Commeyras A (1999). N-Carbamoylaminoacid solid-gas nitrosation by NO/NOx : a new route to oligopeptides via α-aminoacid N-carboxyanhydride. Prebiotic implications. Journal of Molecular Evolution 48: 638–645.

    Google Scholar 

  • Taillades J, Boiteau L, Beuzelin I, Lagrille O, Biron JP, Vayaboury W, Vanden­abeele-Trambouze O, Giani O, Commeyras A (2001). A pH-dependent cyan­ate reactivity model: application to preparative N-carbamoylation of amino acids. Perkin Trans. 2: 1247–1253.

    Google Scholar 

  • Tolstikhin IN, Marty B (1998). The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol. 147: 27.

    Google Scholar 

  • Toon OB, Zahnle K, Turco RP, Covey C (1994). Environmental perturbations caused by asteroid impacts, in Hazards due to comets and asteroids. Univ. Arizona Press, Tucson, USA, pp 791–826.

    Google Scholar 

  • Turco RP, Toon OB, Park C, Whitten RC, Pollack JB, Noerdlinger P (1982). An analysis of the physical, chemical, optical, and historical consequence of the 1908 Tungunska meteor fall. Icarus 50: 1–52.

    Google Scholar 

  • Wald G (1957). The origin of Optical Activity. Ann. NY Acad. Sci. 69: 352–368.

    Google Scholar 

  • Weber AL (1998). Prebiotic aminoacid thioester synthesis: Thiol-dependent amino acid synthesis from formose substrate (formaldehyde and glycolaldehyde) and ammonia. Origins of Life and Evolution of the Biosphere 28: 259–270.

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409: 175–178.

    Google Scholar 

  • Zahnle K (1998). Origins of atmospheres. ASP Conf Series 148: Origins: 364.

    Google Scholar 

  • Zahnle K, Kasting JF, Sleep N (1988). Impact production of NO and reduced species. In: LPI Contribution 673 (abstracts of the Topical conference on global catastrophes in Earth history: interdisciplinary conference on impacts, volcanism, and mass mortality, Snowbird, Utah, Oct. 20–23, 1988), Lunar & Planetary Institute, Houston, pp 223–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Commeyras, A., Boiteau, L., Vandenabeele-Trambouze, O., Selsis, F. (2005). Peptide Emergence, Evolution and Selection on the Primitive Earth. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_16

Download citation

Publish with us

Policies and ethics