Skip to main content

Peptide Emergence, Evolution and Selection on the Primitive Earth

I. Convergent Formation of N-Carbamoyl Amino Acids Rather than Free α-Amino Acids?

  • Chapter
  • First Online:

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

After summarising current knowledge about the origins of primitive Earth organic matter, we focus our attention solely on α -amino acids and their derivatives. We then analyze the mechanism for the formation of these compounds, under both extraterrestrial and primitive-Earth conditions, and show that a “multicomponent system” consisting of prebiotic molecules (hydrogen cyanide, several carbonyl compounds, ammonia, alkyl amines, carbonic anhydride, sodium bicarbonate, borate, cyanic acid) may have been the precursors of these essential compounds. We show that this multicomponent system leads reversibly to several intermediate nitriles, which irreversibly evolve, first to α-amino acids and N-carbamoyl amino acids via selective catalytic processes, and then to N-carbamoyl amino acids alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bada J, Miller SL (1968). Ammonium ion concentration in the primitive ocean. Science 159: 423–425.

    Google Scholar 

  • Botta O, Glavin DP, Kminek G, Bada J (2002). Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Orig. Life Evol. Biosphere 32: 143–163.

    Google Scholar 

  • Carlson RW (1996). Where has all the old crust gone? Nature 379: 581–582.

    Google Scholar 

  • Chyba CF, Sagan C (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355: 125–132.

    Google Scholar 

  • Clayton RN, Mayeda TK (1984). The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67: 151–161.

    Google Scholar 

  • Commeyras A, Taillades J, Mion L, Pascal R, Lasperas M, Rousset A (1976). Procédé d'hydrolyse catalytique chimique d'alpha-aminonitrile ou de leurs sels. French Patent nr 76 365 20.

    Google Scholar 

  • Commeyras A, Taillades J, Collet H, Boiteau L, Pascal R, Vandenabeele-Trambouze O, Pascal R, Rousset A, Garrel L, Rossi JC, Cottet H, Biron JP, Lagrille O, Plasson R, Souaid E, Selsis F, Dobrijevic M (2003). Approche dynamique de la synthèse des peptides et de leurs précurseurs sur la Terre primitive. In: Les Traces du Vivant. Gargaud M, Despois D, Parisot JP (eds.), Presses Universitaires de Bordeaux, (Chap. 5) pp 115–162 (see especially the appendix).

    Google Scholar 

  • Cooper GW, Cronin JR (1995). Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim. Cosmochim. Acta 59: 1003–1015.

    Google Scholar 

  • Cooper GW, Kimmich N, Beslisle W, Sarinana J, Brabham K, Garrel L (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414: 879–883.

    Google Scholar 

  • Cronin JR, Pizzarello S (1983). Amino acids in meteorite. Adv. Space Res. 3: 5–18.

    Google Scholar 

  • Cronin JR, Chang S (1993). Organic Matter In Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite. In: The Chemistry of Life's Origins, Greenberg JM et al. (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 209–258.

    Google Scholar 

  • Cronin JR, Pizzarello S (1997). Enantiomeric excesses in meteoritic amino acids. Science 14, 275(5302): 951–955.

    Google Scholar 

  • Flores JJ, Bonner WA, Massey GA (1977). Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J. Am. Chem. Soc. 99: 3622–3625.

    Google Scholar 

  • Hayatsu R, Studier MH, Moore LP, Anders E (1975). Purines and trieazines in the Murchison meteorite. Geochim. Cosmochim. Acta 39: 471–488.

    Google Scholar 

  • Jorissen A, Cerf C (2002). Asymmetric photoreactions as the origin of biomolecular homochirality: a critical review. Orig. Life Evol. Biosphere 32: 129–142.

    Google Scholar 

  • Jungclaus GA, Yuen GU, Moore CB (1976). Evidence for the presence of low molecular weight alcools and carbonyl compounds in the Murchison météorite. Meteoritics 11: 231–237.

    Google Scholar 

  • Kasting JF, Ackerman TP (1986). Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science 234: 1383–1985.

    Google Scholar 

  • Ksander G, Bold G, Lattmann R, Lehmann C, Früh T, Xiang Y, Inomata K, Buser H, Schreiber J, Zass E, Eschenmoser A (1987). Chemie der α-aminonitrile. Helv. Chim. Acta 70: 1115–1172.

    Google Scholar 

  • Lerner NR (1997). Influence of Allende minerals on deuterium retention of products of the Strecker synthesis. Geochim. Cosmochim. Acta 61: 4885–4893.

    Google Scholar 

  • Maas R, McCulloch MT (1991). The provenance of Archean clastic metasediments in the Narryer Gneiss complex, western Australia: trace elements geochemistry, Nd isotopes, and U-Pb ages for detrital zircons. Geochim. Cosmochim. Acta 55: 1915–1932.

    Google Scholar 

  • Martin H (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14: 753–756.

    Google Scholar 

  • Martin H (1987). Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. J. Petrology 28: 921–953.

    Google Scholar 

  • Maurette M (1995). Were micrometeorites a source of prebiotic molecules on the early Earth? Adv. Space Res. 15: 113–126.

    Google Scholar 

  • Maurette M (1998). Micrometeorites on the early Earth. In: The Molecular Origin of Life: Assembling Pieces of the Puzzle. Brack A (ed.), Cambridge University Press, Cambridge, UK, pp 147–186.

    Google Scholar 

  • Maurette M (2001). La matière extraterrestre primitive et les mystères de nos origines. In: L'environnement de la Terre primitive. Gargaud M, Despois D, Parisot JP (eds.), Presses Universitaires de Bordeaux, Bordeaux, Fr, pp 99–127.

    Google Scholar 

  • Miller SL (1953). Production of aminoacids under possible primitive Earth conditions. Science 117: 528–529.

    Google Scholar 

  • Miller SL (1957). The mecanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta 23: 480–489.

    Google Scholar 

  • Miller SL (1998). The endogenous synthesis of organic compounds. In: The Molecular Origins of Life. Brack A (ed.). Cambridge University Press, Cambridge, UK, pp 59–85.

    Google Scholar 

  • Mojzsis SJ, Krishnamurthy R, Arrhenius G (1999). Before RNA and after: Geophysical and geochemical constraints on molecular evolution. In: The RNA Word (second edition). Gesteland RF, Cech TR, Athins JF (eds.), Cold Spring Harbor University Press, NY, USA, pp 1–47.

    Google Scholar 

  • Mojzsis SJ, Harrison MT, Pidgeon RT (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409: 178–181.

    Google Scholar 

  • Nagata Y (1999). D-amino acids in nature. In: Advances in BioChirality. Pályi G, Zucchi C, Caglioti L (eds.), Elsevier, Amsterdam , The Netherlands, pp 271–283.

    Google Scholar 

  • Navarro-Gonzalez R, Molina MJ, Molina LT (1998). Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett. 25: 3123–3126.

    Google Scholar 

  • Navarro-Gonzalez R, McKay CP, Nna Mvondo D (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412: 61–64.

    Google Scholar 

  • Nishino H, Kosaka A, Hembury G, Shitomi H, Onuky H, Inoue Y (2001). Mechanism of pH-Dependent Photolysis of Aliphatic Amino Acids and Enantiomeric Enrichment of Racemic Leucine by Circularly Polarized Light. Organic Lett. 3: 921–924.

    Google Scholar 

  • Orό J (1961). Amino-acid synthesis from hydrogen cyanide under possible primitive Earth conditions. Nature 190: 389–390.

    Google Scholar 

  • Owen T, Cess RD, Ramanathan V (1979). Enhanced carbon dioxide greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277: 640–642.

    Google Scholar 

  • Pascal R (2003). Catalysis by Induced Intramolecularity: What Can Be Learned by Mimicking Enzymes with Carbonyl Compounds that Covalently Bind Substrates? Eur. J. Org. Chem, pp 1813–1824.

    Google Scholar 

  • Pascal R, Taillades J, Commeyras A (1978). Systèmes de Strecker et Apparentés. X. Décomposition et hydratation en milieu aqueux basique des α-aminonitriles secondaires. Processus d'hydratation autocatalytique et catalyse par l'acétone. Tetrahedron 34: 2275–2281.

    Google Scholar 

  • Pascal R, Taillades J, Commeyras A (1980). Systèmes de Strecker et Apparentés. XII. Catalyse par les aldéhydes de l'hydratation intramoléculaire des α-aminonitriles. Tetrahedron 36: 2999–3008.

    Google Scholar 

  • Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984). The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy, and dicarboxylic acids. Adv. Space Res. 4: 69–74.

    Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980). Photochemical production of formaldehyde in Earth's primitive atmosphere. Science 210: 183–185.

    Google Scholar 

  • Pizzarello S, Cronin JR (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta 64: 329–338.

    Google Scholar 

  • Pizzarello S, Cooper GW (2001). Molecular and chiral analyses of some protein amino acid derivatives in the Murchison and Murray meteorite. Meteorit. Planet. Sci. 36: 897–909.

    Google Scholar 

  • Prinn RG, Fegley B (1987). Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth Planet. Sci. Lett. 83: 1–4.

    Google Scholar 

  • Rossi JC, Garrel L, Taillades J, Commeyras A (1996). Hydrolyse et oxydation d'α-aminonitriles en présence de solution aqueuse basique de H2O2. CR Acad. Sci. Paris 322: 767–773.

    Google Scholar 

  • Selsis F (2000). Modèle d'évolution physico-chimique des atmosphères de planètes telluriques. Application à l'atmosphère primitive terrestre et aux planètes extrasolaires. PhD thesis, Université Bordeaux 1 (France).

    Google Scholar 

  • Selsis F, Parisot JP, Dobrijevic M, Toublanc D (1996). Photochemical modeling of the primitive atmosphere of telluric planets. 11th International Conference on the Origin of Life, Orléans (France).

    Google Scholar 

  • Shimoyama A, Ogasawara R (2002). Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites. Orig. Life Evol. Biosphere 32: 165–179.

    Google Scholar 

  • Strecker A (1850). Liebigs Ann. Chem. 75: 27–51.

    Google Scholar 

  • Summers DP (1999). Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia. Origins of Life and Evolution of the Biosphere 29: 33–46.

    Google Scholar 

  • Summers DP, Chang S (1993). Prebiotic ammonia from reduction of nitrite by iron(II) on the early Earth. Nature 365: 630–633.

    Google Scholar 

  • Summers DP, Lerner NR (1998). Ammonia from iron (II) reduction of nitrite and the Strecker synthesis: do iron (II) and cyanide interfere with each other? Origin of Life Evolution of the Biosphere 28: 1–11.

    Google Scholar 

  • Taillades J, Beuzelin I, Garrel L, Tabacik V, Commeyras A (1998). N-carbamoyl-α-aminoacids rather than free α-aminoacids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Orig. Life Evol. Biosphere 28: 61–77.

    Google Scholar 

  • Taillades J, Brugidou J, Pascal R, Sola R, Mion L, Commeyras A (1986). Nouvelles voies de synthèse d'acides α-aminés. L'Actualité Chimique, pp 13–20.

    Google Scholar 

  • Taillades J, Boiteau L, Beuzelin I, Lagrille O, Biron JP, Vayaboury W, Vanden­abeele-Trambouze O, Giani O, Commeyras A (2001). A pH-dependent cyanate reactivity model: application to preparative N-carbamoylation of amino acids. Perkin Trans. 2, pp 1247–1253.

    Google Scholar 

  • Vervoort JD, Patchett PJ, Gehrels GE, Nutman AJ (1996). Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379: 624–627.

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409: 175–178.

    Google Scholar 

  • Yamagata Y, Mohri T (1982). Formation of cyanate and carbamyl phosphate by electric discharges of model primitive gas. Orig. Life 12: 41–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Commeyras, A., Boiteau, L., Vandenabeele-Trambouze, O., Selsis, F. (2005). Peptide Emergence, Evolution and Selection on the Primitive Earth. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_15

Download citation

Publish with us

Policies and ethics