Chirality and the Origin of Homochirality

  • John Cronin
  • Jacques Reisse
Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)


Racemic Mixture Enantiomeric Excess Parity Violation Carbonaceous Chondrite Chiral Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Avalos M., Babiano R., Cintas P., Jimenez J.L., Palacios J.C. (2000). From parity to chirality: Chemical implications revisited. Tetrahedron Asymmetry, 11, 2845–2874. Google Scholar
  2. Bouchiat M.A., Pottier L. (1984). An atomic preference between left and right. Scientific American, 76–86. Google Scholar
  3. Brack A. (July, 1998), L'asymétrie du vivant in ``Pour la Science – Dossier Hors Série,'' Paris (France) ``Les symétries de la nature'' (this special issue contains many interesting articles for those who wish to integrate chirality into the general problem of symmetry and the breaking of symmetry in biology, chemistry, physics, and cosmology.) Google Scholar
  4. Cline B.C. (editor) (1996). Physical Origin of Homochirality on Earth, American Institute of Physics, Woodbury, New York (USA). Google Scholar
  5. Feringa B.L., van Velden A. (1999). Absolute asymmetry synthesis: the origin, control and amplification of chirality. Angew. Chem. Int. Ed., 38, 3418–3438. Google Scholar
  6. Jacques J. (1992). La Molécule et son Double. Hachette, Paris. Google Scholar
  7. Mason S.F. (1982). Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge (UK). Google Scholar
  8. Mislow, K. (199). Molecular Chirality. Chapter 1 in ``Topics in stereochemistry,'' vol 22, S.E. Denmark, ed. J. Wiley and Sons, New York (USA). Google Scholar
  9. Nordén B. (1978). The Asymmetry of Life. J. Mol. Evol., 11, 313–332. Google Scholar
  10. W.J. Lough and I. Wainer (Eds.) (2002). Chirality in Natural and Applied Science. Blackwell Science Ltd-CRC Press, USA and Canada. Google Scholar


  1. Aikawa Y., Herbst, E. (2001). Two-dimensional distribution and column densities of gaseous molecules in protoplanetary disks. II. Deuterated species and UV-shielding by ambient clouds. Astron. Astrophys., 372, 1107–1117. Google Scholar
  2. Altman E., Altman K.H., Nebel K., Mutter M. (1988). Conformational studies on host-guest peptides containing chiral alpha-methyl-alpha-amino acids. Int. J. Pept. Protein Res., 32, 344–351. Google Scholar
  3. Asakura S., Soga T., Uchida T., Osanai S., Kondepudi D.K. (2002). Probability distribution of enantiomeric excess in unstirred and stirred crystallization of binaphthyl melt. Chirality, 14, 85–89. Google Scholar
  4. Auf Der Heyde T.P.E., Buda A.B., Mislow K. (1991). Desymmetrization and degree of chirality. J. of Mathematical Chemistry, 6, 255–265. Google Scholar
  5. Avalos M., Babiano R., Cintas P., Jimenez J.L., Palacios J.C. (2000). From parity to chirality: Chemical implications revisited. Tetrahedron: Asymmetry, 11, 2854–2874. Google Scholar
  6. Bada J.L., McDonald G.D. (1995). Amino acid racemization on Mars: Implications for the preservation of biomolecules from an extinct Martian biota. Icarus, 114, 139–143. Google Scholar
  7. Bada J.L., Miller S.L. (1987). Racemization and the origin of optimalised active organic compounds in living organisms. Biosystems, 20, 21–26. Google Scholar
  8. Bailey J., Chrysostomou A., Hough J.H., Gledhill T.M., McCall A., Clark S., Ménard F., Tamura M. (1998). Circular polarization in star formation regions: Implications for biomolecular homochirality. Science, 281, 672–674. Google Scholar
  9. Bailey J. (2001). Circularly polarized light and the origin of homochirality. Origins Life Evol. Biosphere, 31, 167–183. Google Scholar
  10. Balavoine G., Moradapour A., Kagan H.B. (1974). Preparation of chiral compounds with high optical purity with circularly polarized light, a model for the prebiotic generation of optical activity. J. Am. Chem. Soc., 96, 5152–5158. Google Scholar
  11. Barron L.D. (1982). Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge. Google Scholar
  12. Barron L.D. (2000). Chirality, Magnetism and Light. Nature, 405, 895–896. Google Scholar
  13. Barron L.D. (2002). Chirality at the sub-molecular level: true and false chirality, p. 53–84 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada. Google Scholar
  14. Bartik K., El Haouaj M., Luhmer M., Collet A., Reisse J. (2000). Can mo­no­atomic xenon become chiral? Chem. Phys.Chem., 4, 221–324. Google Scholar
  15. Bartik K., Luhmer M., Collet A., Reisse J. (2001). Molecular polarization and molecular chiralization: The first example of a chiralized xenon atom. Chirality, 13, 2–6. Google Scholar
  16. Blair N.E., Bonner W.A. (1980). Experiments on the amplification of optical activity. Origins of Life, 10, 255–263. Google Scholar
  17. Blair N.E., Dirbas F.M., Bonner W.A. (1981). Stereoselective hydrolysis of leucine oligomers. Tetrahedron, 37, 27–29. Google Scholar
  18. Blout E.R, Idelson M. (1956). Polypeptides VI. Poly-alpha-L-glutamic acid. Preparation and helix-coil conversions. J. Am. Chem. Soc., 78, 497–498. Google Scholar
  19. Bolli M, Micura R., Eschenmoser A. (1997). Pyranosyl-RNA/ Chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2, 3-cyclophosphates (with a commentary concerning the origin of biomolecular homo­chirality), Chemistry and Biology, 4, 309–320. Google Scholar
  20. Bonner W.A., Flores J.J. (1975). Experiments on the origin of optical activity. Origins of Life, 6, 187–194. Google Scholar
  21. Bonner W.A., Rubenstein E. (1987). Supernovae, neutron stars and biomolecular chirality. Biosystems 20, 99–111. Google Scholar
  22. Bonner W.A (1991). The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosphere, 21, 59–11. Google Scholar
  23. Bonner W.A. (1994). Enantioselective autocatalysis - spontaneous resolution and the prebiotic generation of chirality. Orig. Life Evol. Biosphere, 24, 63–78. Google Scholar
  24. Bonner W.A. (1996). The quest for chiralitry in Physical Origin of Homochirality on Earth, ed. D.B. Cline, p. 17–49, American Institute of Physics, Proc. 379, Woodbury, New York. Google Scholar
  25. Bonner W.A., Rubenstein E., Brown G.S. (1999). Extraterrestrial handedness: A reply. Orig. Life Evol. Biosphere, 30, 329–332. Google Scholar
  26. Bonner W.A. (1999). Chirality amplification – the accumulation principle revisited. Orig. Life Evol. Biosphere, 29, 615–623. Google Scholar
  27. Bonner W.A., Bean B.D. (2000). Asymmetric photolysis with elliptically polarized light. Orig. Life Evol. Biosphere, 30, 513–517. Google Scholar
  28. Bonner W.A. (2000). Parity violation and the evolution of biomolecular homochirality. Chirality, 12, 114–126. Google Scholar
  29. Brack A., Spach G. (1981). Enantiomer enrichment in early peptides. Origins of Life, 11, 135–142. Google Scholar
  30. Buda A.B., Mislow K. (1991). On geometric measure of chirality. J. of Molecular Structure (Theochem), 232, 1–12. Google Scholar
  31. Buda A.B, Auf der Heyde T., Mislow K. (1992). On quantifying chirality. Angew. Chem. Int. Ed. Engl., 31, 989–1007. Google Scholar
  32. Buchardt O. (1974). Photochemistry with circularly polarized light. Angew. Chem. Int. Ed. Engl., 13, 179–185. Google Scholar
  33. Buschmann H., Thede R., Heller D. (2000). New developments in the origins of the homochirality of biologically relevant molecules. Angew. Chem. Int. Ed., 39, 4033–4036. Google Scholar
  34. Cerf C., Jorissen A. (2000). Is amino-acid homochirality due to asymmetric photolysis in space? Space Science Reviews, 92, 603–612. Google Scholar
  35. Chyba C.F., Sagan, C. (1992). Endogeneous production, exogeneous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature, 355, 125–132. Google Scholar
  36. Collet A., Brienne M-J., Jacques J. (1980). Optical Resolution by Direct Crystallization of Enantiomer Mixtures. Chem. Rev., 80, 215–230. Google Scholar
  37. Collet A. (1990). The Homochiral versus heterochiral packing dilemma in Problems and Wonders of Chiral Molecules, ed. M. Simonyi, Akademia Kiado, Budapest. Google Scholar
  38. Cronin J.R., Chang S. (1993). Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite in The Chemistry of Life's Origins, eds. J.M. Greenberg, et al., p 209–258, Kluwer Acad. Pub., Netherlands. Google Scholar
  39. Cronin J.R., Pizzarello S. (1997). Enantiomeric exesses in meteoritic amino acids. Science, 275, 951–955. Google Scholar
  40. Cronin J.R., Pizzarello S. (2000). Chirality of meteoritic organic matter: A brief review. in Perspectives in Amino Acid and Protein Geochemistry, eds. Goodfriend G. et al., p 15–22, Oxford University Press, Oxford, New York. Google Scholar
  41. Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et magnétique. J. Chim. Phys., 3éme série, t.III, 393–402. Google Scholar
  42. Decker P. (1974). The origin of stochastic information (noise) in bioids: Open systems which can exist in several steady states. J. Mol. Evol., 4, 49–65. Google Scholar
  43. Droesbeke J.J. (2001). in Eléments de Statistique, 4ème édition, p 206–207, Editions de l'Université de Bruxelles). Google Scholar
  44. Dunitz J.D. (1996). Symmetry arguments in chemistry. Proc. Natl. Acad. Sci. USA, 93, 14260–14266. Google Scholar
  45. Engel M.H., Macko S.A., Silfer J.A. (1990). Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature, 348, 47–49. Google Scholar
  46. Engel M.H., Macko S.A. (1997). Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature, 389, 265–268. Google Scholar
  47. Eliel E.M., Wilen S.H.(1994). Stereochemistry of Organic Compounds. J. Wiley and Sons, New York (USA). Google Scholar
  48. Epstein S., Krishnamurthy R.V., Cronin J.R., Pizzarello S., Yuen G.U. (1987). Unusual stable isotope ratios in amino acids and carboxylic extracts from the Murchison meteorite. Nature, 326, 477–479. Google Scholar
  49. Feringa B.L., Huck N.P., van Doren H.K. (1995). Chiroptical switching between liquid crystalline phases. J. Am. Chem. Soc., 117, 9929–9930. Google Scholar
  50. Figereau A., Duval E., Boukenter A. (1995). Can biological homochirality result from a phase transition? Orig. Life Evol. Biosphere, 25, 211–217. Google Scholar
  51. Flores J.J., Bonner W.A., Massey G.A. (1977). Asymmetric photolysis of (R,S)-leucine with circularly polarized light. J. Am. Chem. Soc., 99, 3622–3625. Google Scholar
  52. Formaggio F., Crisma M., Bonora G.M., Pantano M., Valle G., Toniolo C., Aubry A., Bayeul D., Kamphuis J. (1995). (R)-Isovaline homopeptides adopt the left-handed helical structure. Peptide Research, 8, 6–14. Google Scholar
  53. Fox S.W., Krampitz G. (1964). Catalytic decomposition of glucose in aqueous solution by thermal proteoids. Nature, 203, 1362–1364. Google Scholar
  54. Franck F.C. (1953). On spontaneous asymmetric synthesis. Biochim. Biophys. Acta, 11, 459–463. Google Scholar
  55. Frondel C. (1978). Characters of quartz fibers. Am. Mineral., 63, 17–27. Google Scholar
  56. Gargaud M, Despois D, Parisot J-P. (Eds.), (2001). L'environnement de la Terre Primitive, Presses Universitaires de Bordeaux, France. Google Scholar
  57. Girard C., Kagan H.B. (1998). Nonlinear effects in asymmetric synthesis and stereoselective reactions: Ten years of investigations. Angew. Chem. Int. Ed., 37, 2922–2959. Google Scholar
  58. Gol'danski V.I., Kuz'min V.V. (1988). Spontaneous mirror symmetry breaking in nature and origin of life. Z. Phys. Chem., 269, 216–274. Google Scholar
  59. Greenberg J.M. (1996). Chirality in interstellar dust and in comets: Life from dead stars, in Physical Origin of Homochirality on Earth, Ed.D.B. Cline, p. 185–186, American Institute of Physics; Proc. 379, Woodbury, New York. Google Scholar
  60. Havinga E. (1954). Spontaneous formation of optically active substances. Biochem. Biophys. Acta, 38, 171–174. Google Scholar
  61. Hazen R.M., Filley R.F, Goodfriend G.A. (2001). Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Nat. Acad. Sci. USA, 98, 5487–5490. Google Scholar
  62. Inoue Y. (1992). Asymmetric photochemical reactions in solution. Chem. Rev., 92, 741–770. Google Scholar
  63. Jackson T.A. (1971). Preferential polymerization and adsorption of L-optical isomers of amino acids relative to D-optical isomers on kaolinite templates. Chem. Geol. 7, 295–306. Google Scholar
  64. Jacques J., Collet A., Wilen S.H. (1981). Enantiomers, Racemates and Resolution, J. Wiley and Sons, New York. Google Scholar
  65. Jorissen A., Cerf C. (2002). Photoreactions as the Origin of Biomolecular Homochirality: A critical review. Origins Life Evol. Biosphere, 32, 129–142. Google Scholar
  66. Julg A., Favier A., Ozias, Y. (1989). A theoretical study of the difference in the behavior of L- and D-alanine toward the two inverse forms of kaolinite. Struc. Chem., 1, 137–141. Google Scholar
  67. Julg A. (1989). Origin of the L-homochirality of amino-acids in the proteins of living organisms in Molecules in Physics, Chemistry and Biology, vol. IV, Ed. J. Maruani, p. 33–52, Kluwer Academic Pub., Netherlands. Google Scholar
  68. Kagan H., Moradpour A., Nicoud J.F., Balavoine G., Martin R.H., Cosyn J.P. (1971). Photochemistry with circularly polarised light. Asymmetric synthesis of octa- and nonahelicene. Tetrahedron Lett., 22, 2479–2482. Google Scholar
  69. Kagan H.P., Fiaud J.C. (1988). Kinetic Resolution in Topics in Stereochemistry, vol 18. eds. Eliel, E.L. and Willen, S.H., p. 249–330, John Wiley, New York. Google Scholar
  70. Kelvin W.T. (1904). Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, p. 602–642, C.J. Clay, London. Google Scholar
  71. Kondepudi D.K., Nelson G.W. (1984). Chiral symmetry-breaking and its sensitivity in non-equilibrium chemical systems. Physica, 125A, 465–496. Google Scholar
  72. Kondepudi D.K., Nelson G.W. (1985). Weak neutral currents and the origin of biomolecular chirality. Nature, 314, 438–441. Google Scholar
  73. Kondepudi D.K. (1996). Selection of handedness in prebiotic chemical processes, in Physical Origin of Homochirality in Life, Ed. Cline D.B., p. 65–72, American Institute of Physics, AIP Conference 379, Woodbury, New York. Google Scholar
  74. Kondepudi D.K., Laudadio J., Asakura K. (1999). Chiral symmetry breaking in stirred crystallization of 1,1-binaphthyl melt. J. Am. Chem. Soc., 121, 1448–1451. Google Scholar
  75. Kuhn W., Braun E. (1929). Photochemische erzeugung optisch aktiver stoffe. Naturwiss., 17, 227–228. Google Scholar
  76. Kvenvolden K., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I.R., Moore C. (1970). Evidence for extraterrestrial aminoacids and hydrocarbons in the Murchison meteorite. Nature, 228, 923–926. Google Scholar
  77. Larder D.F. (1967). Historical aspects of the tetrahedron chemistry. J. Chem. Ed., 44, 661–666. Google Scholar
  78. Lee T.D., Yang C.N. (1956). Question of parity conservation in weak interactions. Phys. Rev., 104, 254–258. Google Scholar
  79. Mc Bride J.M., Carter R.L. (1991) Spontaneous resolution by stirred crystallization. Angew. Chem. Int. Ed., Engl. 30, 293–295. Google Scholar
  80. Mac Dermott A.J. (1996). The weak force and SETH: The search for extra-terrestrial homochirality, in Physical Origin of Homochirality on Earth, Ed.D.B. Cline, p. 241–254, American Institute of Physics, Proc. 379, Woodbury, New York. Google Scholar
  81. Mac Dermott A.J. (2002). The origin of biomolecular chirality, p. 23–52 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada. Google Scholar
  82. Mason S.F. (1982). Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge. Google Scholar
  83. Mason S.F. (1997). Extraterrestrial handedness. Nature, 389, 804. Google Scholar
  84. Mason S.F. (2002). Pasteur on molecular handedness – and the sequel, p. 1–19 in Chirality in Natural and Applied Science, Eds. W.J. Lough and I.W. Wainer, Blackwell Science Ltd. CRC Press, USA and Canada. Google Scholar
  85. Matsuura K., Inoue S., Tsuruta T. (1965) Asymmetric selection in the copolymerization of N-carboxy-L- and D-alanine. Makromol. Chem., 85, 284–290. Google Scholar
  86. Meierhenrich U., Thiemann W.H-P., Rosenbauer, H. (1999). Molecular parity violation via comets. Chirality, 11, 575–582. Google Scholar
  87. Meinschein W.G., Frondel C., Laur P., Mislow K. (1966). Meteorites: Optical activity in organic matter. Science, 154, 377–380. Google Scholar
  88. Mileikovwsky C., Cucinotta F., Wilson F., Gladman B., Hornek G., Lindegren, L., Melosh J., Rickman H., Valtonen M., Zheng, J.Q. (2000). Natural transfer of viable microbes in space, Part 1: From Mars to Earth and from Earth to Mars. Icarus, 145, 391–427. Google Scholar
  89. Miller S.L. (1997). Peptide nucleic acids and prebiotic chemistry. Nature Struct. Biol., 4, 167–169. Google Scholar
  90. Mills W.H. (1932). Some aspects of stereochemistry. Chem. and Ind., 750–759. Google Scholar
  91. Milton R.C. deL, Milton S.F.C., Kent, S.B.H. (1992). Total chemical synthesis of a D-enzyme. The enantiomers of HIV-1 protease show demonstration of remplaçable chiral-substrate-specificity. Science, 256, 1445–1448. Google Scholar
  92. Mislow K. (1965). Introduction to Stereochemistry, W.A. Benjamin, New York. Google Scholar
  93. Mislow K. (1996). A commentary on the topological chirality and achirality of molecules. Croat. Chim. Acta, 69, 485–511. Google Scholar
  94. Mislow K. (1997). Fuzzy restrictions and inherent uncertainties in chirality studies, in Fuzzy Logic in Chemistry, ed. D.H. Rouvray, p. 65–88, Academic Press, San Diego (USA). Google Scholar
  95. Monod J. (1970) Le Hasard et la Nécessité; Essai sur la Philosophie Naturelle de la Biologie Moderne, Editions du Seuil, Paris. Google Scholar
  96. Mullie F., Reisse J. (1987). Organic matter in carbonaceous chondrites. Topics in Current Chemistry (Spinger Verlag), 139, 83–117. Google Scholar
  97. Nielsen P.E. (1993). Peptide-Nucleic Acid (PNA)–A model structure for the primordial genetic code. Origins Life Evol. Biosphere, 23, 323–327. Google Scholar
  98. Nielsen P.E. (1996). Peptide Nucleic Acid (PNA). Implications for the origin of the genetic material and the homochirality of life, pages in Physical Origin of Homochirality in Life, AIP Conference Proceedings 379. Ed. D.B. Cline, p. 55–61,Woodbury, New York. Google Scholar
  99. Nishino H., Kosaka A, Hembury G.A., Shitomi H., Onuki H., Inoue I. (2001). Mechanism of pH-dependent photolysis of aliphatic aminoacids and enantiomeric enrichment of racemic leucine by circularly polarized light. Org. Letters, 3, 921–924. Google Scholar
  100. Nordén B. (1977). Was photoresolution of amino acids the origin of optical activity in life. Nature, 266, 567–568. Google Scholar
  101. Nordén B. (1978). The Asymmetry of Life. J. Mol. Evol 11, 313–332. Google Scholar
  102. Penzias A.A. (1980). Nuclear processing and isotopes in the Galaxy. Science, 208, 663–669. Google Scholar
  103. Pizzarello S., Krishnamurty R.V., Epstein S., Cronin J.R. (1991). Isotopic analyses of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta, 55, 905–910. Google Scholar
  104. Pizzarello S., Cronin J.R. (1998). Alanine enantiomers in the Murchison meteorite. Nature, 394, 236. Google Scholar
  105. Pizzarello S., Cronin J.R. (2000). Non-racemic amino acids in the Murchison and Murray meteorites. Geochim. Cosmochim. Acta, 64, 329–338. Google Scholar
  106. Pizzarello S., Zolensky M., Turk K.A. (2003). Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochim. Cosmochim. Acta, 67, 1589–1595. Google Scholar
  107. Quack M. (2002). How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed., 41, 4618–4630. Google Scholar
  108. Prigogine I., Kondepudi D.K. (1999). Thermodynamique. Des Moteurs Thermiques aux Structures Dissipatives, ed. Odile Jacob, Paris. Google Scholar
  109. Rassat A, Fowler P.V. (2003). Any scalene triangle is the most chiral triangle. Helvetic Chimica Acta, 86, 1728–1740. Google Scholar
  110. Rau H. (1983). Asymmetric Photochemistry in Solution. Chem. Rev., 83, 355–547. Google Scholar
  111. Rawn J.D. (1989). Biochemistry, Neil Patterson Pub. Carolina Biological Supply Company, Burlington, North Carolina. Google Scholar
  112. Rikken G.L., Raupach E. (2000). Enantioselective Magnetochiral Photochemistry. Nature, 405, 932–935. Google Scholar
  113. Reisse J., Mullie F. (1993). On the origins of organic matter in carbonaceous chondrites. Pure and Applied Chemistry, 65, 1281–1292. Google Scholar
  114. Reisse J. (2001). in L'environnement de la Terre Primitive, eds. Gargaud M., Despois D., Parisot J.P., p. 323–342, Presses Universitaires de Bordeaux, Bordeaux, France. Google Scholar
  115. Roberts J.A. (1984). Supernovae and life. Nature, 308, 318. Google Scholar
  116. Robinson R. (1974). Preface of the Van't Hoff-Le Bel Centenary Volume. Tetrahedron, 30, 1477–1486. Google Scholar
  117. Rubenstein E., Bonner W.A., Noyes H.P., Brown G.S. (1983). Supernovae and life. Nature, 306, 118–120. Google Scholar
  118. Salam A. (1993). The Origin of Chirality, the Role of Phase Transition and their Induction in Amino acids in Chem. Evol. and Origin of Life, eds. Ponnamperuma C, Chela-Flores J., Deepak Pub., Hampton, Virginia, USA. Google Scholar
  119. Shibata T., Yamamoto J., Matsumoto N., Yonekubo S., Osanai S., Soai K. (1998). Amplification of a Slight Enantiomeric Imbalance in Molecules Based on Asymmetric Autocatalysis: The First Correlation between High Enantiomeric Enrichment in a Chiral Molecule and Circularly Polarized Light. J. Am. Chem. Soc., 120, 12157–12158. Google Scholar
  120. Siegel J.S. (1998). Homochiral imperative of molecular evolution. Chirality, 10, 24–27. Google Scholar
  121. Siegel J.S. (2002). Shattered Mirrors. Nature, 419, 346–347. Google Scholar
  122. Singleton D.A., Vo L.K. (2002). Enantioselective synthesis without discrete optically active additives. J. Am. Chem. Soc., 124, 10010–10011. Google Scholar
  123. Soai K., Shibata T., Morioka H., Choji K. (1995). Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature, 378, 767–768. Google Scholar
  124. Soai K., Osanai S., Kadowaki K., Yonebuko S., Shibata T., Sato I. (1999). d- and l-Quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc., 121, 1235–1236. Google Scholar
  125. Soai K., Shibata T., Sato I. (2000). Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc. Chem. Res., 33, 382–390. Google Scholar
  126. Spach P.G. (1974). Polymérizsation des énantiomères d'un acide α-aminé. Stéréo­sélection and amplification de l'asymétrie. Chimia, 28, 500–503. Google Scholar
  127. Szabo-Nagy A., Keszthelyi L. (1999). Demonstration of the Parity-Violating Energy Difference between Enantiomers. Proc. Natl. Acad. Sci. USA, 96, 4225–4255. Google Scholar
  128. Takats Z, Nanita S.C., Cooks R.G. (2003). Serine octamer reactions: indicators of prebiotic relevance. Angew. Chem. Int. Ed., 42, 3521–3523. Google Scholar
  129. Tranter G.E. (1985). Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality. Nature, 318, 172–173. Google Scholar
  130. Triggle D.J. (1997). Stereoselectivity of drug action. Drug Discovery Today, 2, 138–147. Google Scholar
  131. Valéry-Radot P. (1968). Pages Illustres de Pasteur. Hachette (Paris). Google Scholar
  132. Vester F. (1974). The (hi)story of the induction of molecular asymmetry by the intrinsic asymmetry in β-decay. J. Mol. Evol., 4, 1–13. Google Scholar
  133. Wagnière G., Meier A. (1983). Difference in the absorption coefficient of arbitrarily polarized light in a magnetic field. Experientia, 39, 1090–1091. Google Scholar
  134. Wald G. (1957). The origin of optical activity. Ann. N.Y. Acad. Sci., 69, 353–358. Google Scholar
  135. Wang W., Yi F., Ni Y., Jin Z., Tang Y. (2000). Parity violation of electroweak force in phase transition of single crystals of D- and L- alanine and valine. J. of Biological Physics, 26, 51–65. Google Scholar
  136. Wannier P.G.A. (1980). Nuclear abundances and evolution of the interstellar medium. Ann. Rev. Astron. Astrophys., 18, 399–437. Google Scholar
  137. Weissbuch I., Addadi L., Berkovitch-Yellin Z., Gatti E., Lahav M., Leiserowitz L. (1984). Spontaneous generation and amplification of optical activity in alpha amino­acids by enantioselective occlusion in centrosymmetric crystals of glycine. Nature, 310, 161–164. Google Scholar
  138. Wolstencroft R.D. (1985). Astronomical sources of circularly polarized light and their role in determining chirality on Earth. in IAU Symp. 112. The Search for Extraterrestrial Life, p. 171–175, D. Reidel, Dordrecht. Google Scholar
  139. Wu C.S., Ambler E., Hayward R.W., Hoppes D.D., Hudson R.P. (1957). Experimental test of parity conservation in beta-decay. Phys. Rev., 105, 1413–1415 Google Scholar
  140. Yamagata Y. (1966). A hypothesis for the asymmetric appearance of biomolecules on Earth. J. Theor. Biol., 11, 495–498. Google Scholar
  141. Zanasi R., Lazeretti P., Ligabue A. and Soncini A. (1999) in Advances in BioChirality eds. Palyi, G. et al., ch. 29, pp 377–385, Elsevier, Amsterdam. Google Scholar
  142. Zee A. (1999). Fearful Symmetry: The Search for Beauty in Modern Physics, p 224, Princeton Science Library. Google Scholar
  143. Zepik H., Shavit E., Tang M., Jensen T.R., Kjaer K., Bolbach G., Leiserowitz L., Weissbuch I., Lahav M. (2002). Amplification of oligopeptides in two-dimensional crystalline self-assemblies on water. Science, 295, 1266–1269. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Cronin
    • 1
  • Jacques Reisse
    • 2
  1. 1.Arizona State UniversityTempeUSA
  2. 2.Free University of BrusselsBelgium

Personalised recommendations