Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View

  • Patrice Buche
  • Ollivier Haemmerlé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1867)

Abstract

This work is part of a national project which aims at building a tool for the analysis of microbial risks in food products. As a first step of this work, we propose a unified querying system which simultaneously scans two different bases: a relational database containing structured information and a conceptual graph knowledge base containing semi-structured information. These two bases contain microbiological information. To achieve this, we propose a way of translating a database query expressed in a speci fic language into a query represented by a conceptual graph. This graph is projected into the base. It can also be generalized in order to avoid silent answers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A database management system for semistructured data. SIGMOD Record 26(3), 54–66 (1997)CrossRefGoogle Scholar
  2. 2.
    Coulondre, S., Libourel, T.: Viewpoints handling in a object model with criterium-based classes. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 573–582. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Michard, A.: XML langage et applications, pp. 335–344. Eyrolles, Paris (1999)Google Scholar
  4. 4.
    Goldman, R., McHugh, J., Widom, J.: From semistructured data to XML: Migrating the lore data model and query language. In: Proceedings of the 2nd International Workshop on the Web and Databases (WebDB 1999), Philadelphia, USA. Springer, Heidelberg (June 1999)Google Scholar
  5. 5.
    Boksenbaum, C., Carbonneill, B., Haemmerlé, O., Libourel, T.: Conceptual graphs for relational databases. In: Mineau, G.W., Sowa, J.F., Moulin, B. (eds.) ICCS 1993. LNCS, vol. 699, pp. 142–161. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Carbonneill, B., Haemmerlé, O.: Standardizing and interfacing relational databases using conceptual graphs. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS (LNAI), vol. 835, Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Buche, P., Loiseau, S.: Using contextual fuzzy views to query imprecise data. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 460–472. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Galindo, J., Cubero, J.C., Pons, O., Medina, J.M.: A server for fuzzy SQL queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp. 161–171. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Sowa, J.F.: Conceptual structures - Information processing in Mind and Machine. Addison-Welsey, Reading (1984)MATHGoogle Scholar
  10. 10.
    Mugnier, M.L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996)MATHGoogle Scholar
  11. 11.
    Jung, D.S., Bodyfelt, F.W., Daeschel, M.A.: Influence of fat and emulsifiers on the efficacy of nisin in inhibiting listeria monocytogenes in fluid milk. Journal of Dairy Science (75), 387–393 (1992)Google Scholar
  12. 12.
    Mugnier, M.L., Chein, M.: Polynomial algorithmsfor projection and matching. In: Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementation. LNCS (LNAI), vol. 754, pp. 239–251. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Genest, D., Chein, M.: An experiment in document retrieval using conceptual graphs. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 489–504. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Carbonneill, B., Haemmerlé, O.: ROCK: un système de question/réponse fondé sur le formalisme des graphes conceptuels. In: Actes du 9ème Congrès Reconnaissances des Formes et Intelligence Artificielle, Paris, France, Janvier 1994, pp. 159–169 (1994)Google Scholar
  15. 15.
    Fargues, J.: CG information retrieval using linear resolution, generalization andgraph splitting. In: Proceedings of the Fourth annual workshop on conceptual graphs, Detroit, USA (Janvier 1989)Google Scholar
  16. 16.
    Haemmerlé, O., Guinaldo, O.: CoGITo v3.3: plate-forme de d veloppement d’applications sur les graphes conceptuels. Technique et Science Informatiques 18(9), 933–965 (1999)Google Scholar
  17. 17.
    Wuwongse, V., Cao, T.H.: Fuzzy conceptual graphs. In: Mineau, G.W., Sowa, J.F., Moulin, B. (eds.) ICCS 1993. LNCS (LNAI), vol. 699, pp. 430–449. Springer, Heidelberg (1993)Google Scholar
  18. 18.
    Cao, T.H., Creasy, P.: Fuzzy order-sorted logic programming in conceptual graphswith a sound and complete proof procedure. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 270–284. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Patrice Buche
    • 1
  • Ollivier Haemmerlé
    • 1
  1. 1.INA-PG, Département OMIPParis Cedex 05France

Personalised recommendations