Skip to main content

High-Level Verification Using Theorem Proving and Formalized Mathematics

(Extended Abstract)

  • Conference paper
Automated Deduction - CADE-17 (CADE 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1831))

Included in the following conference series:

  • 447 Accesses

Abstract

Quite concrete problems in verification can throw up the need for a nontrivial body of formalized mathematics and draw on several special automated proof methods which can be soundly integrated into a general LCF-style theorem prover. We emphasize this point based on our own work on the formal verification in the HOL Light theorem prover of floating point algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various poly- logarithmic constants. Mathematics of Computation 66, 903–913 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.): TPHOLs 1999. LNCS, vol. 1690, p. 83. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Boulton, R.J.: Effciency in a fully-expansive theorem prover. Technical Report 337, University of Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK, Author’s PhD thesis (1993)

    Google Scholar 

  4. Cousineau, G., Mauny, M.: The Functional Approach to Programming. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  6. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  7. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), Available on the Web as, http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz

  8. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 203–220. Springer, Heidelberg (1996)

    Google Scholar 

  10. Harrison, J.: Proof style. In: Giménez, E. (ed.) TYPES 1996. LNCS, vol. 1512, pp. 154–172. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Harrison, J.: Theorem Proving with the Real Numbers. Springer-Verlag (1998), Revised version of author’s PhD thesis

    Google Scholar 

  12. Harrison, J.: A machine-checked theory of floating point arithmetic. In: Bertot et al. [2], pp. 113–130

    Google Scholar 

  13. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754- 1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA (1985)

    Google Scholar 

  14. Knopp, K.: Theory and Application of Infinite Series, 2nd edn. Blackie and Son Ltd. (1951)

    Google Scholar 

  15. Kumar, R., Kropf, T., Schneider, K.: Integrating a first-order automatic prover in the HOL environment. In: Archer, M., Joyce, J.J., Levitt, K.N. (eds.) Proceedings of the 1991 International Workshop on the HOL theorem proving system and its Applications, University of California at Davis, Davis CA, USA, pp. 170–176. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  16. Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of the correctness of the kernel of the AMD5K86 floating-point division program. IEEE Transactions on Computers 47, 913–926 (1998)

    Article  MathSciNet  Google Scholar 

  17. O’Leary, J., Zhao, X., Gerth, R., Seger, C.-J.H.: Formally verifying IEEE compliance of floating-point hardware. Intel Technology Journal 1999-Q1, 1–14 (1999), Available on the Web as http://developer.intel.com/technology/itj/q11999/articles/art_5.htm.

  18. Rudnicki, P.: An overview of the MIZAR project. Available on the Web as http://web.cs.ualberta.ca/~piotr/Mizar/MizarOverview.ps (1992)

  19. Rusinoff, D.: A mechanically checked proof of IEEE compliance of a register-transfer-level specification of the AMD-K7 floating-point multiplication, division, and square root instructions. LMS Journal of Computation and Mathematics 1, 148–200 (1998), Available on the Web via http://www.onr.com/user/russ/david/k7-div-sqrt.html

    Google Scholar 

  20. Russell, B.: The autobiography of Bertrand Russell. Allen & Unwin (1968)

    Google Scholar 

  21. Syme, D.: Three tactic theorem proving. In: Bertot et al. [2], pp. 203–220

    Google Scholar 

  22. Trybulec, A.: The Mizar-QC/6000 logic information language. ALLC Bulletin (Association for Literary and Linguistic Computing) 6, 136–140 (1978)

    Google Scholar 

  23. Weis, P., Leroy, X.: Le langage Caml. InterEditions (1993), See also the CAML Web page: http://pauillac.inria.fr/caml/

  24. Wenzel, M.: Isar - a generic intepretive approach to readable formal proof documents. In: Bertot et al. [2], pp. 167–183

    Google Scholar 

  25. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 3. Cambridge University Press, Cambridge (1910)

    MATH  Google Scholar 

  26. Zammit, V.: On the implementation of an extensible declarative proof language. In: Bertot et al. [2],pp. 185–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, J. (2000). High-Level Verification Using Theorem Proving and Formalized Mathematics. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_1

Download citation

  • DOI: https://doi.org/10.1007/10721959_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67664-5

  • Online ISBN: 978-3-540-45101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics