Skip to main content

Shorter Fitness Preserving Genetic Programs

  • Conference paper
Book cover Artificial Evolution (AE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1829))

Included in the following conference series:

Abstract

In the paper a method that moderates code growth in genetic programming is presented. The addressed problem is symbolic regression. A special mutation operator is used for the simplification of programs. If every individual program in each generation is simplified, then the performance of the genetic programming system is slightly worsened. But if simplification is applied as a mutation operator, more compact solutions of the same or better accuracy can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P.J.: Genetic programming and emergent intelligence. In: Kinnear, K.E. (ed.) Advances in Genetic Programming, pp. 75–97. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  3. Ekárt, A.: Generating class descriptions of four bar linkages. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, pp. 42–47 (1998)

    Google Scholar 

  4. Gilbert, W.: Genes-in-pieces revisited. Science 228, 823–824 (1985)

    Article  Google Scholar 

  5. Hooper, D.C., Flann, N.S.: Improving the accuracy and robustness of genetic programming through expression simplification. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, p. 428 (1996)

    Google Scholar 

  6. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description length principle. In: Kinnear, K.E. (ed.) Advances in Genetic Programming, pp. 265–284. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference (1999)

    Google Scholar 

  9. Nordin, P., Francone, F.D., Banzhaf, W.: Explicitly defined introns and destructive crossover in genetic programming. In: Rosca, J.P. (ed.) Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pp. 6–22 (1995)

    Google Scholar 

  10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Sandor, G.N., Erdman, A.G.: Advanced mechanism design: Analysis and synthesis, vol. 2. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

  12. Soule, T., Foster, J.A., Dickinson, J.: Code growth in genetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 215–223 (1996)

    Google Scholar 

  13. Stryer, L.: Biochemistry. Freeman, New York (1995)

    Google Scholar 

  14. Watson, J., Hopkins, N.H., Roberts, J.W., Argetsinger-Steitz, J., Weiner, A.M.: Molecular Biology of the Gene. Benjamin-Cummings (1987)

    Google Scholar 

  15. Wilson, A.C.: The molecular basis of evolution. Scientific American 253(4), 148–157 (1985)

    Article  Google Scholar 

  16. Zhang, B.-T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3(1), 17–38 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ekárt, A. (2000). Shorter Fitness Preserving Genetic Programs. In: Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M., Ronald, E. (eds) Artificial Evolution. AE 1999. Lecture Notes in Computer Science, vol 1829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721187_5

Download citation

  • DOI: https://doi.org/10.1007/10721187_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67846-5

  • Online ISBN: 978-3-540-44908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics