Vertical Fragmentation and Allocation in Distributed Databases with Site Capacity Restrictions Using the Threshold Accepting Algorithm

  • Joaquín Pèrez
  • Rodolfo Pazos
  • Juan Frausto
  • David Romero
  • Laura Cruz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1793)


This paper presents an extension of the DFAR mathematical optimization model, which unifies the fragmentation, allocation and dynamical migration of data in distributed database systems. The extension consists of the addition of a constraint that models the storage capacity of network sites. This aspect is particularly important in large databases, which exceed the capacity of one or more sites. The Threshold Accepting Algorithm is a variation of the heuristic method known as Simulated Annealing, and it is used for solving the DFAR model. The paper includes experimental results obtained for large test cases.


Heuristic optimization distributed database design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    García Hong-Mei, C., Liu Sheng, O.R.: A Semantic Based Methodology for Integrated Computer-Aided Distributed Database Design. In: Proc. 25th Hawaii International Conference on System Sciences, vol. 3, pp. 288–299 (1992)Google Scholar
  2. 2.
    Ceri, S., Pelagatti, G.: Distributed Databases: Principles & Systems. McGraw-Hill, New York (1984)Google Scholar
  3. 3.
    Pérez, J., Romero, D., Frausto, J., Pazos, R., Rodríguez, G., Reyes, F.: Dynamic Allocation of Vertical Fragments in Distributed Databases Using the Threshold Accepting Algorithm. In: Proceedings of the 10th IASTED International Conference on Parallel and Distributed Computing and Systems, Las Vegas, pp. 210–213 (1998)Google Scholar
  4. 4.
    Lin, X., Orlowska, M., Zhan, Y.: On Data Allocation with the Minimum Overall Communication Cost in Distributed Database Design. In: Proc. of ICCI 1993, pp. 539–544 (1988)Google Scholar
  5. 5.
    Morales, L., Garduño, R., Romero, D.: The Multiple-Minima Problem in Small Peptides Revisited, The threshold Accepting Approach. Journal of Biomolecular Structure & Dynamics 9(5), 951–957 (1992)Google Scholar
  6. 6.
    Pazos, R.: Evaluation and Design of Integrated Packet Switching and Circuit Switching Computer Networks. Ph.D. dissertation, Computer Science Dept., UCLA, p.236 (december 1983)Google Scholar
  7. 7.
    Beasley, J.F., Dowsland, K., Glover, F., Laguna, M.: Modern Heuristic Techniques for Combinatorial Problems, p. 320. Colin R. Reeves, New York (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Joaquín Pèrez
    • 1
    • 2
  • Rodolfo Pazos
    • 2
  • Juan Frausto
    • 3
  • David Romero
    • 4
  • Laura Cruz
    • 5
  1. 1.Instituto de Investigaciones Eléctricas 
  2. 2.Centro Nacional de Investigación y Desarrollo Tecnológico 
  3. 3.ITESM Campus Morelos 
  4. 4.Instituto de Matemáticas, UNAM 
  5. 5.Instituto Tecnológico de Cd. Madero 

Personalised recommendations