Towards Hybrid Neural Learning Internet Agents

  • Stefan Wermter
  • Garen Arevian
  • Christo Panchev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1778)


The following chapter explores learning internet agents. In recent years, with the massive increase in the amount of available information on the Internet, a need has arisen for being able to organize and access that data in a meaningful and directed way. Many well-explored techniques from the field of AI and machine learning have been applied in this context. In this paper, special emphasis is placed on neural network approaches in implementing a learning agent. First, various important approaches are summarized. Then, an approach for neural learning internet agents is presented, one that uses recurrent neural networks for the learning of classifying a textual stream of information. Experimental results are presented showing that a neural network model based on a recurrent plausibility network can act as a scalable, robust and useful news routing agent. concluding section examines the need for a hybrid integration of various techniques to achieve optimal results in the problem domain specified, in particular exploring the hybrid integration of Preference Moore machines and recurrent networks to extract symbolic knowledge.


Recurrent Neural Network Recurrent Network Learning Agent Semantic Vector Context Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balabanovic, M., Shoham, Y.: Learning information retrieval agents: Experiments with automated web browsing. In: Proceedings of the 1995 AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, Stanford, CA (1995)Google Scholar
  2. 2.
    Balabanovic, M., Shoham, Y., Yun, Y.: An adaptive agent for automated web browsing. Technical Report CS-TN-97-52, Stanford University (1997)Google Scholar
  3. 3.
    Cohen, W.: Learning rules that classify e-mail. In: AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA (1996)Google Scholar
  4. 4.
    Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern discovery on the world wide web. In: International Conference on Tools for Artificial Intelligence, Newport Beach, CA (November 1997)Google Scholar
  5. 5.
    Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery, S.: Learning to extract symbolic knowledge from the world wide web. In: Proceedings of the 15th National Conference on Artificial Intelligence, Madison, WI (1998)Google Scholar
  6. 6.
    Edwards, P., Bayer, D., Green, C.L., Payne, T.R.: Experience with learning agents which manage internet-based information. In: AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA, pp. 31–40 (1996)Google Scholar
  7. 7.
    Elman, J.L.: Finding structure in time. Technical Report CRL 8901, University of California, San Diego, CA (1988)Google Scholar
  8. 8.
    Elman, J.L.: Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7, 195–226 (1991)Google Scholar
  9. 9.
    Freitag, D.: Information extraction from html: Application of a general machine learning approach. In: National Conference on Artificial Intelligence, Madison, Wisconsin, pp. 517–523 (1998)Google Scholar
  10. 10.
    Fuernkranz, J., Mitchell, T., Riloff, E.: A case study in using linguistic phrases for text categorization on the WWW. In: Proceedings of the AAAI 1998 Workshop on Learning for Text Categorisation, Madison, WI (1998)Google Scholar
  11. 11.
    Giles, L., Omlin, C.W.: Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent neural networks. Connection Science 5, 307–337 (1993)CrossRefGoogle Scholar
  12. 12.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)Google Scholar
  13. 13.
    Hendler, J.: Developing hybrid symbolic/connectionist models. In: Barnden, J.A., Pollack, J.B. (eds.) Advances in Connectionist and Neural Computation Theory. High Level Connectionist Models, vol. 1, pp. 165–179. Ablex Publishing Corporation, Norwood (1991)Google Scholar
  14. 14.
    Holte, R., Drummond, C.: A learning apprentice for browsing. In: AAAI Spring Symposium on Software Agents, Stanford, CA (1994)Google Scholar
  15. 15.
    Honavar, V.: Symbolic artificial intelligence and numeric artificial neural networks: towards a resolution of the dichotomy. In: Sun, R., Bookman, L.A. (eds.) Computational Architectures integrating Neural and Symbolic Processes, pp. 351–388. Kluwer, Boston (1995)Google Scholar
  16. 16.
    Honkela, S.: Self-organizing maps in symbol processing. In: Sun, R., Wermter, S. (eds.) Hybrid Neural Systems 1998. LNCS, vol. 1778, pp. 348–362. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Hoyle, M.A., Lueg, C.: Open SESAME: A look at personal assisitants. In: Proceedings of the Interanational Conference on the Practical Applications of Intelligent Agents and Multi-Agent Technology, London, pp. 51–56 (1997)Google Scholar
  18. 18.
    Hull, D., Pedersen, J., Schutze, H.: Document routing as statistical classification. In: AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA (1996)Google Scholar
  19. 19.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Proceedings of the European Conference on Machine Learning, Chemnitz, Germany (1998)Google Scholar
  20. 20.
    Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: A tour guide for the world wide web. In: Fifteenth International Joint Conference on Articial Intelligence, Nagoya, Japan (1997)Google Scholar
  21. 21.
    Jordan, M.I.: Attractor dynamics and parallelism in a connectionist sequential machine. In: Proceedings of the Eighth Conference of the Cognitive Science Society, Amherst, MA, pp. 531–546 (1986)Google Scholar
  22. 22.
    Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM - self-organizing maps of document collections. Neurocomputing 21, 101–117 (1998)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, Berlin (1989)Google Scholar
  24. 24.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)Google Scholar
  25. 25.
    Kohonen, T.: Self-organisation of very large document collections: State of the art. In: Proceedings of the International Conference on Ariticial Neural Networks, pp. 65–74. Skovde, Sweden (1998)Google Scholar
  26. 26.
    Lawrence, S., Giles, C.L.: Searching the world wide web. Science 280, 98–100 (1998)CrossRefGoogle Scholar
  27. 27.
    Lewis, D.D.: Reuters-21578 text categorization test collection (1997),
  28. 28.
    Liere, R., Tadepalli, P.: The use of active learning in text categorisation. In: AAAI Spring Symposium on Machine Learning in Information Access, Stanford, CA (1996)Google Scholar
  29. 29.
    Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks 7(6), 1329–1338 (1996)CrossRefGoogle Scholar
  30. 30.
    Menczer, F., Belew, R., Willuhn, W.: Articial life applied to adaptive informa- tion agents. In: Proceedings of the 1995 AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments (1995)Google Scholar
  31. 31.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)Google Scholar
  32. 32.
    Miikkulainen, R.: Subsymbolic Natural Language Processing. MIT Press, Cambridge (1993)Google Scholar
  33. 33.
    Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  34. 34.
    Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Learning to classify text from labeled and unlabeled documents. In: Proceedings of the National Conference on Articial Intelligence, Madison, WI (1998)Google Scholar
  35. 35.
    Papka, R., Callan, J.P., Barto, A.G.: Text-based information retrieval using exponentiated gradient descent. In: Advances in Neural Information Processing Systems, vol. 9. MIT Press, Denver (1997)Google Scholar
  36. 36.
    Perkowitz, M., Etzioni, O.: Adaptive web sites: an AI challenge. In: International Joint Conference on Articial Intelligence, Nagoya, Japan (1997)Google Scholar
  37. 37.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  38. 38.
    Siegelmann, H.T., Horne, B.G., Giles, C.L.: Computational capabilities of recurrent NARX neural networks. Technical Report CS-TR-3408, University of Maryland, College Park (1995)Google Scholar
  39. 39.
    Spiliopoulou, M., Faulstich, L.C., Winkler, K.: A data miner analyzing the navigational behavior of web users. In: ACAI-1999 Workshop on Machine Learning in User Modeling, Crete (July 1999)Google Scholar
  40. 40.
    Sum, J.P.F., Kan, W.K., Young, G.H.: A note on the equivalence of NARX and RNN. Neural Computing and Applications 8, 33–39 (1999)CrossRefGoogle Scholar
  41. 41.
    Sun, R.: Integrating Rules and Connectionism for Robust Commonsense Reasoning. Wiley, New York (1994)zbMATHGoogle Scholar
  42. 42.
    Sun, R., Peterson, T.: Multi-agent reinforcement learning: Weighting and partitioning. In: Neural Networks (1999)Google Scholar
  43. 43.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press, Cambridge (1998)Google Scholar
  44. 44.
    Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory, Methodology, Tool and Case Studies. Academic Press, San Diego (1998)Google Scholar
  45. 45.
    Wermter, S.: Hybrid Connectionist Natural Language Processing. Chapman and Hall, Thomson International (1995)Google Scholar
  46. 46.
    Wermter, S., Panchev, C., Arevian, G.: Hybrid neural plausibility networks for news agents. In: Proceedings of the National Conference on Artificial Intelligence, Orlando, USA, pp. 93–98 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Wermter
    • 1
  • Garen Arevian
    • 1
  • Christo Panchev
    • 1
  1. 1.Hybrid Intelligent Systems GroupUniversity of Sunderland, Centre for Informatics, SCETSunderlandUK

Personalised recommendations