Argument Filtering Transformation

  • Keiichirou Kusakari
  • Masaki Nakamura
  • Yoshihito Toyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1702)


To simplify the task of proving termination of term rewriting systems, several elimination methods, such as the dummy elimination, the distribution elimination, the general dummy elimination and the improved general dummy elimination, have been proposed. In this paper, we show that the argument filtering method combining with the dependency pair technique is essential in all the above elimination methods. We present remarkable simple proofs for the soundness of these elimination methods based on this observation. Moreover, we propose a new elimination method, called the argument filtering transformation, which is not only more powerful than all the other elimination methods but also especially useful to make clear the essential relation hidden behind these methods.


Term Rewriting System Termination Elimination Method Dependency Pair Argument Filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arts, T.: Automatically Proving Termination and Innermost Normalization of Term Rewriting Systems, PhD thesis, Utrecht University (1997)Google Scholar
  2. 2.
    Arts, T., Giesl, J.: Automatically Proving Termination where Simplification Orderings Fail. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 261–272. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Arts, T., Giesl, J.: Proving Innermost Normalization Automatically. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 157–171. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. To appear in Theoretical Computer ScienceGoogle Scholar
  5. 5.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  6. 6.
    Ferreira, M., Zantema, H.: Dummy Elimination: Making Termination Easier. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 243–252. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Ferreira, M.: Termination of Term Rewriting, Well-foundedness, Totality and Trans- formations, PhD thesis, Utrecht University (1995)Google Scholar
  8. 8.
    Giesl, J., Ohlebusch, E.: Pushing the Frontiers of Combining Rewrite Systems Farther Outwards. In: Proceedings of the Second International Workshop on Frontiers of Combining Systems, FroCos 1998, Amsterdam, The Nether- lands, October 1998. Applied Logic Series (1998)Google Scholar
  9. 9.
    Klop, J.W.: Term Rewriting Systems. Handbook of Logic in Computer Science II, pp. 1–112. Oxford University Press, Oxford (1992)Google Scholar
  10. 10.
    Kusakari, K., Toyama, Y.: On Proving AC-Termination by AC-Dependency Pairs, Research Report IS-RR-98-0026F, School of Information Science, JAIST (1998)Google Scholar
  11. 11.
    Kusakari, K., Toyama, Y.: The Hierarchy of Dependency Pairs, Research Report IS-RR-99-0007F, School of Information Science, JAIST (1999)Google Scholar
  12. 12.
    Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation, Research Report IS-RR-99-0008F, School of Information Science, JAIST (1999)Google Scholar
  13. 13.
    Middeldorp, A., Ohsaki, H., Zantema, H.: Transforming Termination by Self-Labelling. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 373–387. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Marche, C., Urbain, X.: Termination of Associative-Commutative Rewriting by Dependency Pairs. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 241–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Nakamura, M., Kusakari, K., Toyama, Y.: On Proving Termination by General Dummy Elimination. To appear in Trans. of IEICE (in Japanese)Google Scholar
  16. 16.
    Zantema, H.: Termination of Term Rewriting: Interpretation and Type Elimination. Journal of Symbolic Computation 17, 23–50 (1994)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Keiichirou Kusakari
    • 1
  • Masaki Nakamura
    • 1
  • Yoshihito Toyama
    • 1
  1. 1.School of Information ScienceJAISTIshikawaJapan

Personalised recommendations