Advertisement

Many-Valued First-Order Logics with Probabilistic Semantics

  • Thomas Lukasiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1584)

Abstract

We present n-valued first-order logics with a purely probabilistic semantics. We then introduce a new probabilistic semantics of n-valued first-order logics that lies between the purely probabilistic semantics and the truth-functional semantics of the n-valued Łukasiewicz logics Ł n . Within this semantics, closed formulas of classical first-order logics that are logically equivalent in the classical sense also have the same truth value under all n-valued interpretations. Moreover, this semantics is shown to have interesting computational properties. More precisely, n-valued logical consequence in disjunctive logic programs with n-valued disjunctive facts can be reduced to classical logical consequence in n-1 layers of classical disjunctive logic programs. Moreover, we show that n-valued logic programs have a model and a fixpoint semantics that are very similar to those of classical logic programs. Finally, we show that some important deduction problems in n-valued logic programs have the same computational complexity like their classical counterparts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. [10], pp. 493–574. The MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Bacchus, F., Grove, A., Halpern, J.Y., Koller, D.: From statistical knowledge bases to degrees of beliefs. Artif. Intell. 87, 75–143 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68, 135–154 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)zbMATHGoogle Scholar
  5. 5.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. In: Proc. of the 12th Annual IEEE Conference on Computational Complexity, pp. 82–101 (1997)Google Scholar
  6. 6.
    de Finetti, B.: Theory of Probability. J. Wiley, New York (1974)zbMATHGoogle Scholar
  7. 7.
    Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Proc. Of the 14th International Conference on Logic Programming, pp. 391–405 (1997)Google Scholar
  8. 8.
    Delahaye, J.P., Thibau, V.: Programming in three-valued logic. Theor. Comput. Sci. 78, 189–216 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Escalada-Imaz, G., Manyà, F.: In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 428–439. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87, 78–128 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fitting, M.: Partial models and logic programming. Theor. Comput. Sci. 48, 229–255 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Program 11(1-2), 91–116 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fitting, M.: Many-valued modal logics II. Fundam. Inf. 17, 55–73 (1992)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hähnle, R.: Exploiting data dependencies in many-valued logics. J. Appl. Non- Class. Log. 6(1), 49–69 (1996)zbMATHGoogle Scholar
  15. 15.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12(3-4), 335–367 (1992)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lakshmanan, L.V.S., Sadri, F.: Probabilistic deductive databases. In: Proc. Of the International Logic Programming Symposium, pp. 254–268 (1994)Google Scholar
  18. 18.
    Lassez, J.-L., Maher, M.J.: Optimal fixed points of logic programs. Theor. Comput. Sci. 39, 15–25 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Leach, S.M., Lu, J.J.: Query processing in annotated logic programming: Theory and implementation. J. Intell. Inf. Syst. 6(1), 33–58 (1996)CrossRefGoogle Scholar
  20. 20.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)zbMATHGoogle Scholar
  21. 21.
    Lu, J.J.: Logic programming with signs and annotations. J. Log. Comput. 6(6), 755–778 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lukasiewicz, T.: Magic inference rules for probabilistic deduction under taxonomic knowledge. In: Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 354–361. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  23. 23.
    Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. In: Principles of Knowledge Representation and Reasoning: Proc. of the 6th International Conference, pp. 380–391. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  24. 24.
    Lukasiewicz, T.: Probabilistic logic programming. In: Proc. of the 13th European Conference on Artificial Intelligence, pp. 388–392. J. Wiley & Sons, Chichester (1998)Google Scholar
  25. 25.
    Ng, R.T.: Semantics, consistency, and query processing of empirical deductive databases. IEEE Trans. Knowl. Data Eng. 9(1), 32–49 (1997)CrossRefGoogle Scholar
  26. 26.
    Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Inf. Comput. 101, 150–201 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and conditional probabilities in deductive databases. J. Autom. Reasoning 10(2), 191–235 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Inf. Comput. 110, 42–83 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Przymusinski, T.C.: Three-valued nonmonotonic formalisms and semantics of logic programs. Artif. Intell. 49, 309–343 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)zbMATHGoogle Scholar
  32. 32.
    Rosser, J.B., Turquette, A.R.: Many-valued Logics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  33. 33.
    Subrahmanian, V.S.: Amalgamating knowledge bases. ACM Trans. Database Syst. 19(2), 291–331 (1994)CrossRefMathSciNetGoogle Scholar
  34. 34.
    van Emden, M.H.: Quantitative deduction and its fix point theory. J. Logic Program 3(1), 37–53 (1986)zbMATHCrossRefGoogle Scholar
  35. 35.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  1. 1.Institut für InformatikUniversität GießenGießenGermany

Personalised recommendations