Kripke, Belnap, Urquhart and Relevant Decidability & Complexity

“Das ist nicht Mathematik. Das ist Theologie.”
  • Jacques Riche
  • Robert K. Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1584)


The first philosophically motivated sentential logics to be proved undecidable were relevant logics like R and E. But we deal here with important decidable fragments thereof, like \(R_{\longrightarrow}\) . Their decidability rests on S. Kripke’s gentzenizations, together with his central combinatorial lemma. Kripke’s lemma has a long history and was reinvented several times. It turns out equivalent to and a consequence of Dickson’s lemma in number theory, with antecedents in Hilbert’s basis theorem. This lemma has been used in several forms and in various fields. For example, Dickson’s lemma guarantees termination of Buchberger’s algorithm that computes the Gröbner bases of polynomial ideals. In logic, Kripke’s lemma is used in decision proofs of some substructural logics with contraction. Our preferred form here of Dickson-Kripke is the Infinite Division Principle (IDP). We present our proof of IDP and its use in proving the finite model property for \(R_{\longrightarrow}\).


Decision Procedure Relevant Decidability Commutative Monoid Substructural Logic Gentzen System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AB75.
    Anderson, A.R., Belnap, N.D.: Entailment I. The Logic of Relevance and Necessity. Princeton Un. Press, Princeton (1975)Google Scholar
  2. ABD92.
    Anderson, A.R., Belnap, N.D., Dunn, J.M.: Entailment II. The Logic of Relevance and Necessity. Princeton Un. Press, Princeton (1992)Google Scholar
  3. BWK93.
    Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases. A Computational Approach to Commutative Algebra. Springer, New York (1993)zbMATHGoogle Scholar
  4. Be45.
    Bell, E.T.: The Development of Mathematics. McGraw-Hill, New York (1945)zbMATHGoogle Scholar
  5. BW65.
    Belnap, N.D., Wallace, J.R.: A Decision Procedure for the System EI of Entailment with Negation. Zeitschr. f. math. Logik und Grundlagen d. Math. 11, 277–289 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bi67.
    Birkhoff, G.: Lattice Theory, 3rd edn. Providence, AMS (1967)zbMATHGoogle Scholar
  7. BGG97.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, New York (1997)zbMATHGoogle Scholar
  8. CLO92.
    Cox, D., Little, J., O’Sheen, D.: Ideals, Varieties, and Algorithms. Springer, New York (1992)zbMATHGoogle Scholar
  9. Ch51.
    Church, A.: The Weak Theory of Implication. In: Menne, A., et al. (eds.) Kontrolliertes Denken, Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften, pp. 22–37. Karl Albert Verlag (1951)Google Scholar
  10. Ch50.
    Curry, H.B.: A Theory of Formal Deducibility, Ann Arbor (1950)Google Scholar
  11. Cu63.
    Curry, H.B.: Foundations of Mathematical Logic, New York (1963)Google Scholar
  12. CuC53.
    Curry, H.B., Craig, W.: Review of [Ch51]. J. Symb. Logic 18, 177–178 (1953)CrossRefGoogle Scholar
  13. Di13.
    Dickson, L.E.: Finiteness of the Odd Perfect Primitive Abundant Numbers with n Distinct Prime Factors. Am. J. Math. 35, 413–422 (1913)CrossRefzbMATHGoogle Scholar
  14. Do92.
    Dos̆en, K.: The First Axiomatization of Relevant Logic. J. Phil. Log. 21, 339–356 (1992)zbMATHCrossRefGoogle Scholar
  15. Du86.
    Dunn, J.M.: Relevance Logic and Entailment. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, Dordrecht, D. Reidel, vol. III, pp. 117–224 (1986)Google Scholar
  16. GY03.
    Grace, J.H., Young, A.: The Algebra of Invariants. Cambridge University Press, Cambridge (1903) (Repub. New York, Chelsea Pub. Comp.) zbMATHGoogle Scholar
  17. Hi52.
    Higman, G.: Ordering by Divisibility in Abstract Algebras. Proc. London. Math. Soc. 2, 326–336 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  18. Hi90.
    Hilbert, D.: Über die Theorie des algebraischen Formen. Math. Annalen 36, 473–534 (1890)CrossRefMathSciNetGoogle Scholar
  19. Kö36.
    König, D.: Theorie der endlichen und unendlichen Graphen. Chelsea Pub. Comp, Repub. New York (1936)Google Scholar
  20. Kr59.
    Kripke, S.: The Problem of Entailment (Abstract). J. Symb. Logic 24, 324 (1959)CrossRefMathSciNetGoogle Scholar
  21. Me73.
    Meyer, R.K.: Improved Decision Procedures for Pure Relevant Logics (1973) (Unpublished)Google Scholar
  22. Me98.
    Meyer, R.K.: Improved Decision Procedures for Pure Relevant Logics. t.a. A. Church’s FestschriftGoogle Scholar
  23. MO94.
    Meyer, R.K., Ono, H.: The Finite Model Property for BCK and BCIW. Studia Logica 53(1), 107–118 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  24. MM82.
    Meyer, R.K., McRobbie, M.A.: Multisets and Relevant Implication I and II. Australasian J. of Philosophy 60, 107–139, 265-281 (1982)CrossRefGoogle Scholar
  25. Or28.
    Orlov, I.E.: The Calculus of Compatibility of Propositions (in Russian). Matematicheskiĭ sbornik 35, 263–286 (1928)zbMATHGoogle Scholar
  26. Si88.
    Simpson, S.G.: Ordinal Numbers and the Hilbert Basis Theorem. J. Symb. Logic 53(3), 961–974 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  27. TMM88.
    Thistlewaite, P., McRobbie, M., Meyer, R.K.: Automated Theorem Proving in Non-Classical Logics. John Wiley, New York (1988)zbMATHGoogle Scholar
  28. Ur84.
    Urquhart, A.: The Undecidability of Entailment and Relevant Implication. J. Symb. Logic 40, 1059–1073 (1984)CrossRefMathSciNetGoogle Scholar
  29. Ur90.
    Urquhart, A.: The Complexity of Decision Procedures in Relevance Logic. In: Dunn, J.M., Gupta, A. (eds.) Truth or Consequences, Essays in Honor of Nuel Belnap., pp. 61–76. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  30. Ur97.
    Urquhart, A.: The Complexity of Decision Procedures in Relevance Logic II (t.a.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jacques Riche
    • 1
  • Robert K. Meyer
    • 2
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium
  2. 2.Automated Reasoning Project, RSISEAustralian National UniversityAustralia

Personalised recommendations