Advertisement

Theorems of Péter and Parsons in Computer Programming

  • Ján Komara
  • Paul J. Voda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1584)

Abstract

This paper describes principles behind a declarative programming language CL (Clausal Language) which comes with its own proof system for proving properties of defined functions and predicates. We use our own implementation of CL in three courses in the first and second years of undergraduate study. By unifying the domain of LISP’s S-expressions with the domain ℕ of natural numbers we have combined the LISP-like simplicity of coding with the simplicity of semantics. We deal just with functions over ℕ within the framework of formal Peano arithmetic. We believe that most of the time this is as much as is needed. CL is thus an extremely simple language which is completely based in mathematics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bus94.
    Buss, S.R.: The witness function method and provably recursive functions of Peano arithmetic. In: Prawitz, D., Skyrms, B., Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science IX (1991). North-Holland, Amsterdam (1994)Google Scholar
  2. Cob65.
    Cobham, A.: The intristic computational difficulty of functions. In: Bar- Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science II, pp. 24–30. North-Holland, Amsterdam (1965)Google Scholar
  3. Col91.
    Colson, L.: About primitive recursive algorithms. Theoretical Computer Science 83(1), 57–69 (1991)zbMATHCrossRefGoogle Scholar
  4. Dav85.
    Davis, M.: Computability and Unsolvability, 2nd edn. McGraw-Hill, New York (1985)Google Scholar
  5. HP93.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  6. Kal43.
    Kalmár, L.: A simple example of an undecidable arithmetical problem (Hungarian with German abstract). Matematikai és Fizikai Lapok 50, 1–23 (1943)zbMATHGoogle Scholar
  7. Kre52.
    Kreisel, G.: On the interpretation of non-finitist proofs II. Journal of Symbolic Logic 17, 43–58 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  8. KV95.
    Komara, J., Voda, P.J.: Syntactic reduction of predicate tableaux to prepositional tableaux. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS (LNAI), vol. 918, pp. 231–246. Springer, Heidelberg (1995)Google Scholar
  9. Min73.
    Mints, G.: Quantifier-free and one-quantifier systems. Journal of Soviet Mathematics 1, 71–84 (1973)CrossRefGoogle Scholar
  10. Par70.
    Parsons, C.: On a number-theoretic choice schema and its relation to induction. In: Intuitionism and Proof Theory: proceedings of the summer conference, Buffalo, N.Y.(1968), pp. 459–473. North-Holland, Amsterdam (1970)CrossRefGoogle Scholar
  11. Pét32.
    Péter, R.: Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion. Mathematische Annalen 110, 612–632 (1932)CrossRefGoogle Scholar
  12. Pét67.
    Péter, R.: Recursive Functions. Academic Press, London (1967)zbMATHGoogle Scholar
  13. Ros82.
    Rose, H.E.: Subrecursion: Functions and Hierarchies. Oxford Logic Guides, vol. 9. Clarendon Press, Oxford (1982)Google Scholar
  14. Sie91.
    Sieg, W.: Herbrand analyses. Archive for Mathematical Logic 30, 409–441 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Smu68.
    Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)zbMATHGoogle Scholar
  16. Vod94.
    Voda, P.J.: Subrecursion as a basis for a feasible programming language. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 324–338. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. Wai97.
    Wainer, S.S.: Basic proof theory and applications to computation. In: Schwichtenberg, H. (ed.) Logic of Computation. Series F: Computer and Systems Sciences, vol. 157, NATO Advanced Study Institute, International Summer School held in Marktoberdorf, Germany, July 25–August 6 (1995), pp. 349–394. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ján Komara
    • 1
  • Paul J. Voda
    • 1
  1. 1.Institute of InformaticsComenius University BratislavaBratislavaSlovakia

Personalised recommendations