Advertisement

On an Optimal Deterministic Algorithm for SAT

  • Zenon Sadowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1584)

Abstract

J. Krajíc̆ek and P. Pudlák proved that an almost optimal deterministic algorithm for TAUT exists if and only if there exists a p-optimal proof system for TAUT. In this paper we prove that an almost optimal deterministic algorithm for SAT exists if and only if there exists a p-optimal proof system for SAT. Combining Krajícek and Pudlák’s result with our result we show that an optimal deterministic algorithm for SAT exists if and only if both p-optimal proof systems for TAUT and for SAT exist.

Keywords

Polynomial Time Turing Machine Propositional Logic Proof System Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balcazar, J.L., Díaz, J., Gabarró, J.: Structural complexity, 2nd edn., vol. I. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  2. 2.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd ACM Symposium on Theory of Computing, pp. 151–158 (1971)Google Scholar
  3. 3.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symbolic Logic 44, 36–50 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Köbler, J., Messner, J.: Complete Problems for Promise Classes by Optimal Proof Systems for Test Sets. In: Proceedings of the 13th Annual IEEE Conference on Computational Complexity, pp. 132–140 (1998)Google Scholar
  5. 5.
    Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. J. Symbolic Logic 54, 1063–1079 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Levin, L.A.: Universal sorting problems. Problems of Information Transmission 9, 265–266 (1973)Google Scholar
  7. 7.
    Messner, J., Torán, J.: Optimal proof systems for Propositional Logic and complete sets. Electronic Colloquium on Computational Complexity (1997), available via http://www.eccc.uni-trier.de/eccc/
  8. 8.
    Trakhtenbrot, B.A.: A survey of Russian Approaches to Perebor (Brute-Force Search) Algorithms. Annals of the History of Computing 6, 384–400 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Verbitskii, O.V.: Optimal algorithms for co-NP sets and the EXP=NEXP problem. Matematicheskie Zametki M.V. Lomonosov Moscow State University 50, 37–46 (1991)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Zenon Sadowski
    • 1
  1. 1.Institute of MathematicsUniversity of BiałystokPoland

Personalised recommendations