Skip to main content

Multilevel Mesh Partitioning for Optimising Aspect Ratio

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1573)

Abstract

Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.

Keywords

  • Cost Function
  • Domain Decomposition
  • Gain Function
  • Average Aspect Ratio
  • Perimeter Length

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10703040_23
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-48516-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, S.T., Simon, H.D.: A Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Practice & Experience 6(2), 101–117 (1994)

    CrossRef  Google Scholar 

  2. Blazy, S., Borchers, W., Dralle, U.: Parallelization methods for a characteristic’s pressure correction scheme. In: Hirschel, E.H. (ed.) Flow Simulation with High Performance Computers II, Notes on Numerical Fluid Mechanics (1995)

    Google Scholar 

  3. Bouhmala, N.: Partitioning of Unstructured Meshes for Parallel Processing. PhD thesis, Inst. d’Informatique, Univ. Neuchatel (1998)

    Google Scholar 

  4. Bramble, J.H., Pasciac, J.E., Schatz, A.H.: The Construction of Preconditioners for Elliptic Problems by Substructuring I+II. Math. Comp. 47+49 (1986+1987)

    Google Scholar 

  5. Diekmann, R., Meyer, B., Monien, B.: Parallel Decomposition of Unstructured FEM-Meshes. Concurrency: Practice & Experience 10(1), 53–72 (1998)

    CrossRef  Google Scholar 

  6. Diekmann, R., Schlimbach, F., Walshaw, C.: Quality Balancing for Parallel Adaptive FEM. In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 170–181. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  7. Farhat, C., Maman, N., Brown, G.: Mesh Partitioning for Implicit Computations via Domain Decomposition. Int. J. Num. Meth. Engng. 38, 989–1000 (1995)

    MATH  CrossRef  Google Scholar 

  8. Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115, 365–385 (1994)

    CrossRef  MathSciNet  Google Scholar 

  9. Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic for Improving Network Partitions. In: Proc. 19th IEEE Design Automation Conf., pp. 175–181. IEEE, Piscataway (1982)

    Google Scholar 

  10. Gupta, A.: Fast and effective algorithms for graph partitioning and sparse matrix reordering. IBM Journal of Research and Development 41(1/2), 171–183 (1996)

    Google Scholar 

  11. Hendrickson, B., Leland, R.: A Multilevel Algorithm for Partitioning Graphs. In: Proc. Supercomputing 1995 (1995)

    Google Scholar 

  12. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. TR 95-035, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455 (1995)

    Google Scholar 

  13. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. TR 95-064, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455 (1995)

    Google Scholar 

  14. Mitchell, S.A., Vasavis, S.A.: Quality Mesh Generation in Three Dimensions. In: Proc. ACM Conf. Comp Geometry, pp. 212–221 (1992)

    Google Scholar 

  15. Schlimbach, F.: Load Balancing Heuristics Optimising Subdomain Aspect Ratios for Adaptive Finite Element Simulations. Diploma Thesis, Dept. Math. Comp. Sci., Univ. Paderborn (1998)

    Google Scholar 

  16. Vanderstraeten, D., Farhat, C., Chen, P.S., Keunings, R., Zone, O.: A Retrofit Based Methodology for the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the Minimum Interface Size Criterion. Comp. Meth. Appl. Mech. Engrg. 133, 25–45 (1996)

    MATH  CrossRef  Google Scholar 

  17. Vanderstraeten, D., Keunings, R., Farhat, C.: Beyond Conventional Mesh Partitioning Algorithms and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In: Bailey, D., et al. (eds.) Parallel Processing for Scientific Computing, pp. 611–614. SIAM, Philadelphia (1995)

    Google Scholar 

  18. Walshaw, C., Cross, M.: Mesh Partitioning: a Multilevel Balancing and Refinement Algorithm. Tech. Rep. 98/IM/35, Univ. Greenwich, London SE18 6PF, UK (March 1998)

    Google Scholar 

  19. Walshaw, C., Cross, M., Diekmann, R., Schlimbach, F.: Multilevel Mesh Partitioning for Optimising Domain Shape. Tech. Rep. 98/IM/38, Univ. Greenwich, London SE18 6PF, UK (July 1998)

    Google Scholar 

  20. Walshaw, C., Cross, M., Everett, M.: Parallel Dynamic Graph Partitioning for Adaptive Unstructured Meshes. J. Par. Dist. Comput. 47(2), 102–108 (1997)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walshaw, C., Cross, M., Diekmann, R., Schlimbach, F. (1999). Multilevel Mesh Partitioning for Optimising Aspect Ratio. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_23

Download citation

  • DOI: https://doi.org/10.1007/10703040_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive