Modelling Correlated Consumer Preferences

  • Marcella CorduasEmail author
Part of the Studies in Theoretical and Applied Statistics book series (STAS)


The CUB model is a mixture distribution recently proposed in literature for modelling ordinal data. The CUB parameters may be related to explanatory variables describing the raters or the object of evaluation. Although various methodological aspects of this class of models have been investigated, the problem of multivariate ordinal data representation is still open. In this article the Plackett distribution is used in order to construct a bivariate distribution from CUB margins. Furthermore, the model is extended so that the effect of rater characteristics on their stated preferences is included.


CUB models Food quality Ordinal data Plackett distribution 


  1. 1.
    Corduas, M.: Assessing similarity of rating distributions by Kullback-Leibler divergence. In: Fichet, B., et al. (eds.) Classification and Multivariate Analysis for Complex Data Structures, pp. 221–228. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Corduas, M., Cinquanta, L., Ievoli, C.: The importance of wine attributes for purchase decisions: a study of Italian consumers perception. Food Qual. Prefer. 28, 407–418 (2013)CrossRefGoogle Scholar
  3. 3.
    Corduas, M., Iannario, M., Piccolo, D.: A class of statistical models for evaluating services and performances. In: Bini, M., et al. (eds.) Statistical Methods for the Evaluation of Educational Services and Quality of Products, pp. 99–117. Physica, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Courcoux, P., Qannari, E.M., Schlich, P.: Sensometric workshop: segmentation of consumers and characterization of cross-cultural differences. Food Qual. Prefer. 17, 658–668 (2006)CrossRefGoogle Scholar
  5. 5.
    Dale, J.R.: Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 42, 909–917 (1986)CrossRefGoogle Scholar
  6. 6.
    D’Elia, A., Piccolo, D.: A mixture model for preferences data analysis, Comp. Stat. & Data Anal. 49, 917–934 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Eurosalmon Final Report: Improved quality of smoked salmon for the European consumer. Final Report for the EC “Quality of Life and Management of Living Resources” Programme (2004).
  8. 8.
    FAO: Commodity update: salmon. Globefish Report, Fisheries Department (2007).
  9. 9.
    Genest, C., Neslehova, J.: A primer on copulas for count data. Astin Bull. 37, 475–515 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Goodman, L.A.: Models and the bivariate normal for contingency tables with ordered categories. Biometrika 68, 347–355 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Iannario, M.: On the identifiability of a mixture model for ordinal data. METRON LXVIII, 87–94 (2010)Google Scholar
  12. 12.
    Iannario, M.: Modelling shelter choices in a class of mixture models for ordinal responses. Stat. Methods Appl. 21, 1–22 (2012a)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Iannario, M.: Hierarchical CUB models for ordinal variables. Commun. Stat. Theory Methods 41, 3110–3125 (2012b)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Iannario, M.: Modelling uncertainty and overdispersion in ordinal data. Commun. Stat. Theory Methods 43, 771–786 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Iannario, M., Piccolo, D.: CUB models: statistical methods and empirical evidence. In: Kenett, R.S., Salini, S. (eds.) Modern Analysis of Customer Surveys: With Applications Using R, pp. 231–258. Wiley, Chichester (2012)Google Scholar
  16. 16.
    Iannario, M., Piccolo, D.: A Short Guide to CUB 3.0 Program (2013).
  17. 17.
    Joe, H.: Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivar. Anal. 94, 401–419 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Joe, H., Xu, J.J.: The estimation method of inference functions for margins for multivariate models. Report No. 166, Department of Statistics, University of British Columbia (1996)Google Scholar
  19. 19.
    Manisera M., Piccolo D., Zuccolotto P.: Analyzing and modelling rating data for sensory data in food industry. Quaderni di Statistica 13, 69–82 (2011)Google Scholar
  20. 20.
    Mardia, K.V.: Families of Bivariate Distributions. Griffin, London (1970)zbMATHGoogle Scholar
  21. 21.
    McCullagh, P.: Regression models for ordinal data (with discussion). J. R. Stat. Soc. Ser. B 42, 109–142 (1980)zbMATHMathSciNetGoogle Scholar
  22. 22.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, London (1989)CrossRefzbMATHGoogle Scholar
  23. 23.
    Molenberghs, G.: A multivariate Plackett distribution with given marginal distributions. Universitaire Instelling Antwerpen, No. 92/33 (1992)Google Scholar
  24. 24.
    Molenberghs, G., Lesaffre, E.: Marginal modelling of correlated ordinal data using multivariate Plackett distribution. J. Am. Stat. Assoc. 89, 633–644 (1994)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mosteller, F.: Association and estimation in contingency tables. J. Am. Stat. Assoc. 63, 1–28 (1968)MathSciNetGoogle Scholar
  26. 26.
    Pearson, K.: On the theory of association. Biometrika 9, 159–315 (1913)CrossRefGoogle Scholar
  27. 27.
    Pearson, K., Heron, D.: Note on the surface of constant association. Biometrika 9, 534–537 (1913)CrossRefGoogle Scholar
  28. 28.
    Piccolo, D.: On the moments of a mixture of uniform and shifted binomial random variables. Quaderni di Statistica 5, 85–104 (2003)Google Scholar
  29. 29.
    Piccolo, D.: Observed information matrix for MUB models. Quaderni di Statistica 8, 33–78 (2006)Google Scholar
  30. 30.
    Piccolo, D., D’Elia, A.: A new approach for modelling consumers’ preferences. Food Qual. Prefer. 19, 247–259 (2008)CrossRefGoogle Scholar
  31. 31.
    Plackett, R.L.: A class of bivariate distributions. J. Am. Stat. Assoc. 60, 516–522 (1965)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Semenou, M., Courcoux, P., Cardinal, M., Nicod, H., Ouisse, A.: Preference study using a latent class approach. Analysis of European preferences for smoked salmon. Food Qual. Prefer. 18, 720–728 (2007)CrossRefGoogle Scholar
  33. 33.
    Yule, G.U.: On the methods of measuring association between two attributes. J. R. Stat. Soc. 75, 579–642 (1912)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Political SciencesUniversity of Naples Federico IINapoliItaly

Personalised recommendations