Skip to main content

Sub-Wavelength Plasmonic Solitons in 1D and 2D Arrays of Coupled Metallic Nanowires

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

  • 1799 Accesses

Abstract

In this chapter, we describe a very promising approach to achieve deep sub-wavelength confinement of the optical field guided by plasmonic nanostructures. In the plasmonic nanostructures investigated in our review, namely, one-dimensional (1D) and two-dimensional (2D) arrays of closely spaced parallel metallic nanowires embedded in an optical medium with Kerr nonlinearity, the optical nonlinearity induced by the evanescent component of the guided modes of the nanowires exactly balances the discrete diffraction due to the optical coupling among neighboring metallic nanowires. As a result, nonlinear optical modes, called plasmonic lattice solitons (PLSs), are formed in the plasmonic array. Because the radius of the nanowires and their separation distance could be much smaller than the operating wavelength the size of the PLSs can be deep in the subwavelength regime. We present fundamental (vorticityless) PLSs in both 1D and 2D plasmonic arrays, and also vortical PLSs in 2D arrays, in both focusing and defocusing nonlinear media. We demonstrate that the spatial extent of fundamental and vortical PLSs could be in the deep-subwavelength regime under experimental accessible conditions. Moreover, their existence, stability, and spatial confinement are studied in detail. Our analysis employs a model based on the coupled-mode theory as well as the full set of Maxwell equations, and shows that the predictions of the two models are in excellent agreement for relatively large nanowires separations. We expect that these nonlinear plasmonic modes have important applications to subwavelength nanophotonics. In particular, we demonstrate that the subwavelength PLSs can be used to optically manipulate with nanometer accuracy the power flow in ultra-compact photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature (London) 424, 824 (2003)

    Google Scholar 

  2. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  3. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Phys. Rep. 408, 131 (2005)

    Article  ADS  Google Scholar 

  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Opt. Lett. 22, 475 (1997)

    Google Scholar 

  5. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)

    Google Scholar 

  6. K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003)

    Google Scholar 

  7. M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).

    Google Scholar 

  8. I.S. Maksymov, A.R. Davoyan, Y. S. Kivshar, Appl. Phys. Lettt. 99, 083304 (2011)

    Google Scholar 

  9. S.A. Maier, S.R. Andrews, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. Lett. 97, 176805 (2006)

    Google Scholar 

  10. J.Y. Yan, L. Li, J. Xiao, Opt Express 20, 1945 (2012)

    Article  ADS  Google Scholar 

  11. A. Marini, R. Hartley, A.V. Gorbach, D.V. Skryabin, Phys. Rev. A84, 063839 (2011)

    Google Scholar 

  12. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, Nature (London) 440, 508 (2006)

    Google Scholar 

  13. N. C. Panoiu, R. M. Osgood, Nano Lett. 4, 2427 (2004)

    Article  ADS  Google Scholar 

  14. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, S. R. J. Brueck, Nano Lett. 6, 1027 (2006)

    Article  ADS  Google Scholar 

  15. J.A.H. van Nieuwstadt, M. Sandtke, R.H. Harmsen, F.B. Segerink, J.C. Prangsma, S. Enoch, L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006)

    Google Scholar 

  16. D. Christodoulides, R. Joseph, Opt. Lett. 13, 794 (1988)

    Google Scholar 

  17. T. Peschel, U. Peschel, F. Lederer, Phys. Rev. E 57, 1127 (1998)

    Google Scholar 

  18. N.C. Panoiu, R.M. Osgood, B.A. Malomed, Opt. Lett. 31, 1097 (2006)

    Google Scholar 

  19. H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, J.S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998)

    Google Scholar 

  20. D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature (London) 424, 817 (2003).

    Google Scholar 

  21. S.L. Chuang, J Lightw. Technol. LT-5, 174 (1987)

    Article  ADS  Google Scholar 

  22. F. Ye, D. Mihalache, B. Hu, N.C. Panoiu, Phys. Rev. Lett. 104, 106802 (2010)

    Google Scholar 

  23. M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Appl. Opt. 24, 4493 (1985)

    Google Scholar 

  24. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

    Google Scholar 

  25. A. Szameit, T. Pertsch, S. Nolte, A. Tunnermann, F. Lederer, Phys. Rev. A77, 043804 (2008)

    Google Scholar 

  26. N.K. Efremidis, K. Hizanidis, Opt. Express 13, 10571 (2005)

    Article  ADS  Google Scholar 

  27. N.K. Efremidis, P. Zhang, Z. Chen, D.N. Christodoulides, C.E. Ruter, D. Kip, Phys. Rev. A81, 053817 (2010)

    Google Scholar 

  28. R. Iliew, C. Etrich, M. Augustin, E.B. Kley, S. Nolte, A. Tunnermann, F. Lederer, Phys. Status Sol. A 204, 3689 (2007)

    Article  ADS  Google Scholar 

  29. Y. Liu, G. Bartal, D.A. Genov, X. Zhang, Phys. Rev. Lett. 99, 153901 (2007)

    Google Scholar 

  30. X. Fan, G.P. Wang, J.C.W. Lee, C.T. Chan, Phys. Rev. Lett. 97, 073901 (2006)

    Google Scholar 

  31. F. Ye, D. Mihalache, B. Hu, N.C. Panoiu, Opt. Lett. 36, 1179 (2010)

    Google Scholar 

  32. E. Feigenbaum, M. Orenstein, Opt. Lett. 32, 674 (2007)

    Google Scholar 

  33. M.A. Noginov, V.A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J.A. Adegoke, B.A. Ritzo, K. Reynolds, Opt. Express 16, 1385 (2008)

    Article  ADS  Google Scholar 

  34. S.M. Xiao, V. P. Drachev, A.V. Kildishev, X.J. Ni, U.K. Chettiar, H.K. Yuan, V.M. Shalaev, Nature (London) 466, 735–738 (2010)

    Google Scholar 

  35. B.A. Malomed, P.G. Kevrekidis, Phys. Rev. E 64, 026601 (2001)

    Google Scholar 

  36. E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. Lett. 93, 160405 (2004)

    Google Scholar 

  37. L. Brzozowski, E.H. Sargent, A.S. Thorpe, M. Extavour, Appl. Phys. Lett. 82, 4429 (2003)

    Google Scholar 

  38. Y. Kou, F. Ye, X. Chen, Phys. Rev. A84, 033855 (2011).

    Google Scholar 

  39. G. Ya. Slepyan, S.A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A.V. Gusakov, Phys. Rev. B60, 17136 (1999).

    Google Scholar 

  40. M.Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S.P. O’Brien, T.F. Heinz, L.E. Brus, Science 306, 1540 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of F. Ye has been supprted by the National Natural Science Foundation of China, Grant No. 11104181. The work of N. C. Panoiu has been supported by the EPSRC, Grant No. EP/G030502/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, F., Mihalache, D., Panoiu, N. (2012). Sub-Wavelength Plasmonic Solitons in 1D and 2D Arrays of Coupled Metallic Nanowires. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_5

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics