Skip to main content

Light-Induced Breaking of Symmetry in Photonic Crystal Waveguides with Nonlinear Defects as a Key for All-Optical Switching Circuits

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

We consider light transmission in 2D photonic crystal waveguide coupled with two identical nonlinear defects positioned symmetrically aside the waveguide. We show that with growth of injected light power there is a breaking of symmetry by two ways. In the first way the symmetry is broken because of different light intensities at the defects. In the second way the intensities at the defects are equaled but phases of complex amplitudes are different. That results in a vortical power flow between the defects similar to the DC Josephson effect if the input power over the waveguide is applied and the defects are coupled. As application of these phenomena we consider the symmetry breaking for the light transmission in a T-shaped photonic waveguide with two nonlinear defects. We demonstrate as this phenomenon can be explored for all-optical switching of light transmission from the left output waveguide to the right one by application of input pulses. Finally we consider the symmetry breaking in the waveguide coupled with single defect presented however by two dipole modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Ostrovskaya, Y.S. Kivshar, M. Lisak, B. Hall, F. Cattani, D. Anderson, Phys. Rev. A 61, 031601 (2000)

    Article  ADS  Google Scholar 

  2. R.D. Agosta, B.A. Malomed, C. Presilla, Phys. Lett. A 275, 424 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. N. Akhmediev, A. Ankiewicz, Phys. Rev. Lett. 70, 2395 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. R. Tasgal, B.A. Malomed, Physica Scripta 60, 418 (1999)

    Article  ADS  Google Scholar 

  5. A. Gubeskys, B.A. Malomed, Eur. Phys. J. D 28, 283 (2004)

    Article  ADS  Google Scholar 

  6. V.A. Brazhnyi, B.A. Malomed, Phys. Rev. A 83, 053844 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Haelterman, P. Mandel, Opt. Lett. 15, 1412 (1990)

    Article  ADS  Google Scholar 

  8. T. Peschel, U. Peschel, F. Lederer, Phys. Rev. A 50, 5153 (1994)

    Article  ADS  Google Scholar 

  9. I.V. Babushkin, Yu.A. Logvin, N.A. \( \text{Lo}\check{\text{i}}\text{ko} \), Quant. Electron. 28, 104 (1998)

    Google Scholar 

  10. J.P. Torres, J. Boyce, R.Y. Chiao, Phys. Rev. Lett. 83, 4293 (1999)

    Article  ADS  Google Scholar 

  11. L. Longchambon, N. Treps, T. Coudreau, J. Laurat, C. Fabre, Opt. Lett. 30, 284 (2005)

    Article  ADS  Google Scholar 

  12. B. Maes, M. Soljaĉić, J.D. Joannopoulos, P. Bienstman, R. Baets, S-P. Gorza, M. Haelterman, Opt. Express 14, 10678 (2006)

    Article  ADS  Google Scholar 

  13. B. Maes, P. Bienstman, R. Baets, Opt. Express 16, 3069 (2008)

    Article  ADS  Google Scholar 

  14. K. Otsuka, K. Ikeda, Opt. Lett. 12, 599 (1987)

    Article  ADS  Google Scholar 

  15. K. Huybrechts, G. Morthier, B. Maes, J. Opt. Soc. Am. B 27, 708 (2010)

    Article  ADS  Google Scholar 

  16. J. Joannopoulos, S.G Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008)

    Google Scholar 

  17. E.N. Bulgakov, K.N. Pichugin, A.F. Sadreev, Phys. Rev. B 83, 045109 (2011)

    Article  ADS  Google Scholar 

  18. E.N. Bulgakov, K.N. Pichugin, A.F. Sadreev, J. Phys. Condens. Mat. 23, 065304 (2011)

    Article  ADS  Google Scholar 

  19. S.M. Jensen, The nonlinear coherent coupler. IEEE J. Quantum Electron. QE-18, 1580 (1982)

    Article  ADS  Google Scholar 

  20. A.A. \(\text{Ma}\check{\text{i}} \text{er} \), Sov. J. Quantum Electron. 12, 1940 (1982)

    Google Scholar 

  21. S.R. Friberg, Y. Silberberg, M.K. Oliver, M.J. Andrejco, M.A. Saifi, P.W. Smith, Appl. Phys. Lett. 52, 1135 (1987)

    Article  ADS  Google Scholar 

  22. H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985)

    Google Scholar 

  23. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 81, 115128 (2010)

    Article  ADS  Google Scholar 

  24. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev, Phys. Rev. Lett. 107, 183901 (2011)

    Article  ADS  Google Scholar 

  25. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  26. K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, D. Hermann, J. Phys. Cond. Mat. 15, R1233 (2003)

    Article  ADS  Google Scholar 

  27. E.N. Bulgakov, A.F. Sadreev, J. Phys. Cond. Mat. 23, 315303 (2011)

    Article  ADS  Google Scholar 

  28. J. Bravo-Abad, S. Fan, S.G. Johnson, J.D. Joannopoulos, M. Soljaĉić, J. Lightwave Technol. 25, 2539 (2007)

    Article  ADS  Google Scholar 

  29. M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding (University Press, Cambridge, 2009)

    Google Scholar 

  30. J.N. Winn, S. Fan, J.D. Joannopoulos, E.P. Ippen, Phys. Rev. B 59, 1551 (1999)

    Article  ADS  Google Scholar 

  31. A.R. Cowan, J.F. Young, Phys. Rev. E 68, 046606 (2003)

    Article  ADS  Google Scholar 

  32. H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, NY, 1984)

    Google Scholar 

  33. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999)

    Article  ADS  Google Scholar 

  34. S. Fan, W. Suh, J.D. Joannopoulos, J. Opt. Soc. Am. A 20, 569 (2003)

    Article  ADS  Google Scholar 

  35. W. Suh, Z. Wang, S. Fan, IEEE J. of Quantum Electron. 40, 1511 (2004)

    Article  ADS  Google Scholar 

  36. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 78, 075105 (2008)

    Article  ADS  Google Scholar 

  37. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, M.J. Khan, C. Manolatou, H.A. Haus, Phys. Rev. B 59, 15–882 (1999)

    Article  Google Scholar 

  38. P.R. Villeneuve, S. Fan, J.D. Joannopoulos, Phys. Rev. B 54, 7837 (1996)

    Article  ADS  Google Scholar 

  39. A.R. McGurn, Chaos 13, 754 (2003)

    Article  ADS  Google Scholar 

  40. A.R. McGurn, J. Phys. Condens. Matter 16, S5243 (2004)

    Article  ADS  Google Scholar 

  41. A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, Yu.S. Kivshar, Phys. Rev. E 71, 036626 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  42. A.E. Miroshnichenko, Yu.S. Kivshar, Phys. Rev. E 72, 056611 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. S.F. Mingaleev, A.E. Miroshnichenko, Yu.S. Kivshar, K. Busch, Phys. Rev. E 74, 046603 (2006)

    Article  ADS  Google Scholar 

  44. S. Longhi, Phys. Rev. B 75, 184306 (2007)

    Article  ADS  Google Scholar 

  45. A.E. Miroshnichenko, Yu. Kivshar, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, Phys. Rev. A 79, 013809 (2009)

    Article  ADS  Google Scholar 

  46. A.E. Miroshnichenko, Phys. Rev. E 79, 026611 (2009)

    Article  ADS  Google Scholar 

  47. J. von Neumann, E. Wigner, Phys. Z. 30, 465 (1929)

    Google Scholar 

  48. A.Z. Devdariani, V.N. Ostrovsky, Yu.N. Sebyakin, Sov. Phys. JETP 44, 477 (1976)

    ADS  Google Scholar 

  49. H. Friedrich, D. Wintgen, Phys. Rev. A 32, 3231 (1985)

    Article  ADS  Google Scholar 

  50. E.N. Bulgakov, K.N. Pichugin, A.F. Sadreev, I. Rotter, JETP Lett. 84, 508 (2006)

    Article  Google Scholar 

  51. A.F. Sadreev, E.N. Bulgakov, K.N. Pichugin, I. Rotter, T.V. Babushkina, in Quantum Dots, Research, Technology and Applications, ed. by R.W. Knoss (Nova Sciencers Publ. Hauppauge, NY, 2008), pp. 547–577

    Google Scholar 

  52. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (Van Nostrand Reinhold Co, NY, 1974)

    Google Scholar 

  53. S.F. Mingaleev, Yu.S. Kivshar, R.A. Sammut, Phys. Rev. E 62, 5777 (2000)

    Article  ADS  Google Scholar 

  54. S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, Opt. Express 15, 12380 (2007)

    Google Scholar 

  55. S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, Opt. Express 16, 11647 (2008)

    Google Scholar 

  56. D. Michaelis, U. Peschel, C. Wächter, A. Bräuer, Phys. Rev. E 68, 065601R (2003)

    Article  ADS  Google Scholar 

  57. G. Lecamp, J.P. Hugonin, P. Lalanne, Opt. Express 15, 11042 (2007)

    Article  ADS  Google Scholar 

  58. P. Exner, P. Šeba, A.F. Sadreev, P. Středa, P. Feher, Phys. Rev. Lett. 80, 1710 (1998)

    Article  ADS  Google Scholar 

  59. G.S. McDonald, W.J. Firth, J. Mod. Opt. 37, 613 (1990)

    Article  ADS  Google Scholar 

  60. Y. Chen, A.W. Snyder, D.N. Payne, IEEE J. Quantum Electron. 28, 239 (1992)

    Article  ADS  Google Scholar 

  61. N. Boumaza, T. Benouaz, A. Chikhaoui, A. Cheknane, Int. J. Phys. Sci. 4, 505 (2009)

    Google Scholar 

  62. V. Grigoriev, F. Biancalana, Opt. Lett. 36, 2131 (2011)

    Article  ADS  Google Scholar 

  63. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 84, 155304 (2011)

    Article  ADS  Google Scholar 

  64. S.G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Opt. Lett. 23, 1855 (1998)

    Article  ADS  Google Scholar 

  65. D. Milam, Appl. Opt. 37, 546 (1998)

    Article  ADS  Google Scholar 

  66. G. Boudebs, K. Fedus, J. Appl. Phys. 105, 103106 (2009)

    Article  ADS  Google Scholar 

  67. R.V. Waterhouse, D. Feit, J. Acoust. Soc. Am. 80, 681 (1986)

    Article  ADS  Google Scholar 

  68. K.-F. Berggren, A.F. Sadreev, A.A. Starikov, Phys. Rev. E 66, 016218 (2002)

    Article  ADS  Google Scholar 

  69. de M.L.L. Guevara, F. Claro, P.A. Orellana, Phys. Rev. B 67, 195335 (2003)

    Article  ADS  Google Scholar 

  70. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 80, 115308 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

AS is grateful to Boris Malomed for fruitful and helpful discussions. The work is partially supported by RFBR grant 12-02-00483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almas Sadreev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bulgakov, E., Sadreev, A., Pichugin, K.N. (2012). Light-Induced Breaking of Symmetry in Photonic Crystal Waveguides with Nonlinear Defects as a Key for All-Optical Switching Circuits. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2011_1

Download citation

  • DOI: https://doi.org/10.1007/10091_2011_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics