Skip to main content

Context-Aware Sensing

  • Chapter
Book cover Body Sensor Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Want R, Hopper A. Active badges and personal interactive computing objects. IEEE Transactions on Consumer Electronics 1992; 38(1):10–20.

    Article  Google Scholar 

  2. Schilit B, Adams N, Want R. Context-aware computing applications. In: Proceedings of the Workshop on Mobile Computing Systems and Applications 1994; 85–90.

    Google Scholar 

  3. Schilit BN, Adams N, Gold R, Tso MM, Want R. The PARCTAB mobile computing system. In: Proceedings of the Fourth Workshop on Workstation Operating Systems 1993; 34–39.

    Google Scholar 

  4. Pascoe J. Adding generic contextual capabilities to wearable computers. In: Proceedings of the Second IEEE International Symposium on Wearable Computers 1998; 92–99.

    Google Scholar 

  5. Dey AK, Abowd G. Towards a better understanding of context and context-awareness. In: Proceedings of the CHI 2000 Workshop on “The What, Who, Where, When, and How of Context-Awareness” 2000.

    Google Scholar 

  6. Korkea-aho M. Context-aware applications survey. http://users.tkk.fi/~mkorkeaa/doc/context-aware.html, 2000.

    Google Scholar 

  7. Abowd GD, Mynatt ED. Charting past, present, and future research in ubiquitous computing. ACM Transactions on Computer-Human Interaction 2000; 7(1):29–58.

    Article  Google Scholar 

  8. Bobick AF. Movement, activity and action: the role of knowledge in the perception of motion. Philosophical Transactions of the Royal Society of London B: Biological Sciences 1997; 352(1358):1257–1265.

    Article  Google Scholar 

  9. Brotherton JA, Abowd GD, Truong KN. Supporting capture and access interfaces for informal and opportunistic meetings. GVU Center, Georgia Institute of Technology, Technical Report, GIT-GVU-99-06, 1999.

    Google Scholar 

  10. Long S, Aust D, Abowd GD, Atkeson CG. Rapid prototyping of mobile context-aware applications: the Cyberguide case study. In: Proceedings of the Second ACM International Conference on Mobile Computing and Networking 1996; 97–107.

    Google Scholar 

  11. Lamming M, Flynn M. Forget-me-not: intimate computing in support of human memory. In: Proceedings of FRIEND21: International Symposium on Next Generation Human Interfaces, Meguro Gajoen, Japan, 1994; 125–128.

    Google Scholar 

  12. Rhodes BJ. The wearable remembrance agent: a system for augmented memory. In: Proceedings of the First International Symposium on Wearable Computers, Cambridge, Massachusetts, 1997; 123–128.

    Google Scholar 

  13. Brown PJ, Bovey JD, Chen X. Context-aware applications: from the laboratory to the marketplace. IEEE Personal Communications 1997; 4(5):58–64.

    Article  Google Scholar 

  14. Want R, Hopper, A., Falcao, V., Gibbons, J. The active badge location system. ACM Transactions on Information Systems 1992; 10(1):91–102.

    Article  Google Scholar 

  15. van Someren EJ, Vonk BF, Thijssen WA, Speelman JD, Schuurman PR, Mirmiran M, et al. A new actigraph for long-term registration of the duration and intensity of tremor and movement. IEEE Transactions on Biomedical Engineering 1998; 45(3):386–395.

    Article  Google Scholar 

  16. Bhattacharya A, McCutcheon EP, Shvartz E, Greenleaf JE. Body acceleration distribution and O2 uptake in humans during running and jumping. Journal of Applied Physiology 1980; 49(5):881–887.

    Google Scholar 

  17. Asada HH, Jiang H-H, Gibbs P. Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors. In: Proceedings of the Twenty-Sixth Annual International Conference of Engineering in Medicine and Biology Society 2004; 1:2157–2160.

    Google Scholar 

  18. Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Proceedings of the Second International Conference on Pervasive Computing, Vienna, Austria, 2004; 1–17.

    Google Scholar 

  19. Lee S-W, Mase K. Activity and location recognition using wearable sensors. IEEE Pervasive Computing 2002; 1(3):24–32.

    Article  Google Scholar 

  20. Thiemjarus S, Lo BPL, Yang GZ. Feature selection for wireless sensor networks. In: Proceedings of the First International Workshop on Wearable and Implantable Body Sensor Networks, Imperial College, London, 2004.

    Google Scholar 

  21. Thiemjarus S, Lo BPL, Yang GZ. A distributed Bayesian framework for body sensor networks. In: Proceedings of the Second International Workshop on Body Sensor Networks, Imperial College, London, 2005.

    Google Scholar 

  22. Thiemjarus S, Lo BPL, Yang GZ. A noise resilient distributed inference framework for body sensor networks. In: Adjunct Proceedings of the Third International Conference on Pervasive Computing, Munich, Germany, 2005; 13–18.

    Google Scholar 

  23. van Laerhoven K, Cakmakci O. What shall we teach our pants? In: Proceedings of the Fourth IEEE International Symposium on Wearable Computers 2000.

    Google Scholar 

  24. Krause A, Siewiorek DP, Smailagic A, Farringdon J. Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers 2003; 88–97.

    Google Scholar 

  25. Inzitari D, Basile AM. Activities of daily living and global functioning. International Psychogeriatrics 2003; 15(Supplement 1):225–229.

    Article  Google Scholar 

  26. Senanarong V, Harnphadungkit K, Prayoonwiwat N, Poungvarin N, Sivasariyanonds N, Printarakul T, et al. A new measurement of activities of daily living for Thai elderly with dementia. International Psychogeriatrics 2003; 15(2):135–148.

    Article  Google Scholar 

  27. Tognetti A, Lorussi F, Bartalesi R, Quaglini S, Tesconi M, Zupone G, et al. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation 2005; 2(1):8.

    Article  Google Scholar 

  28. Walker DJ, Heslop PS, Plummer CJ, Essex T, Chandler S. A continuous patient activity monitor: validation and relation to disability. Physiological Measurement 1997; 18(1):49–59.

    Article  Google Scholar 

  29. White R, Agouris I, Selbie RD, Kirkpatrick M. The variability of force platform data in normal and cerebral palsy gait. Clinical Biomechanics (Bristol, Avon) 1999; 14(3):185–192.

    Article  Google Scholar 

  30. Chang WN, Tsirikos AI, Miller F, Schuyler J, Glutting J. Impact of changing foot progression angle on foot pressure measurement in children with neuromuscular diseases. Gait Posture 2004; 20(1):14–19.

    Article  Google Scholar 

  31. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. The New England Journal of Medicine 2002; 347(22):1761–1768.

    Article  Google Scholar 

  32. Mueller MJ, Salsich GB, Bastian AJ. Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls. Gait Posture 1998; 7(3):200–206.

    Article  Google Scholar 

  33. Zijlstra W, Rutgers AW, van Weerden TW. Voluntary and involuntary adaptation of gait in Parkinson’s disease. Gait Posture 1998; 7(1):53–63.

    Article  Google Scholar 

  34. Chen J, Kam AH, Zhang J, Liu N, Shue L. Bathroom activity monitoring based on sound. In: Proceedings of the Third International Conference on Pervasive Computing, Munich, Germany, 2005; 47–61.

    Google Scholar 

  35. Teicher MH. Actigraphy and motion analysis: new tools for psychiatry. Harvard Review of Psychiatry 1995; 3(1):18–35.

    Article  Google Scholar 

  36. Myrtek M, Brugner G. Perception of emotions in everyday life: studies with patients and normals. Biological Psychology 1996; 42(1–2):147–164.

    Article  Google Scholar 

  37. Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23(10):1175–1191.

    Article  Google Scholar 

  38. Bardram JE. Applications of context-aware computing in hospital work: examples and design principles. In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, 2004; 1574–1579.

    Google Scholar 

  39. Golding AR, Lesh N. Indoor navigation using a diverse set of cheap, wearable sensors. In: Proceedings of the Third IEEE International Symposium on Wearable Computers 1999; 29–36.

    Google Scholar 

  40. Wilson D, Atkeson C. The Narrator: a daily activity summarizer using simple sensors in an instrumented environment. In: Adjunct Proceedings of the Fifth International Conference on Ubiquitous Computing, Seattle, Washington, 2003.

    Google Scholar 

  41. van Laerhoven K, Kern N, Gellersen HW, Schiele B. Towards a wearable inertial sensor network. In: Proceedings of IEE Eurowearable 2003; 125–130.

    Google Scholar 

  42. van Laerhoven K, Gellersen H-W. Spine versus porcupine: a study in distributed wearable activity recognition. In: Proceedings of the Eighth International Symposium on Wearable Computers 2004; 1:142–149.

    Article  Google Scholar 

  43. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 2003; 50(6):711–723.

    Article  Google Scholar 

  44. Loosli G, Lee SG, Canu S. Context changes detection by one-class SVMs. In: Proceedings of Workshop on Machine Learning for User Modeling: Challenges, the Tenth International Conference on User Modelling, Edinburgh, Scotland, 2005.

    Google Scholar 

  45. Basseville M, Nikiforov IV. Detection of abrupt changes — theory and application. Prentice-Hall, 1993.

    Google Scholar 

  46. Steele BG, Belza B, Cain K, Warms C, Coppersmith J, Howard J. Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development 2003; 40(5):45–58.

    Article  Google Scholar 

  47. Lukowicz P, Junker H, Tröster G. Automatic calibration of body worn acceleration sensors. In: Proceedings of the Second International Conference on Pervasive Computing, Linz/Vienna, Austria, 2004; 176–181.

    Google Scholar 

  48. Baum LE, Pertrie T, Soules G, Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 1970; 41:164–171.

    MathSciNet  MATH  Google Scholar 

  49. Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 1989; 77.

    Google Scholar 

  50. Gold B, Morgan N. Speech and audio signal processing: processing and perception of speech and music. New York: John Wiley and Sons, 2000.

    Google Scholar 

  51. Mantyjarvi J, Himberg J, Seppanen T. Recognizing human motion with multiple acceleration sensors. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hawaii, USA, 2001; 2:747–752.

    Google Scholar 

  52. Patterson D, Fox D, Kautz H, Philipose M. Expressive, tractable and scalable techniques for modeling activities of daily living. In: Proceedings of the Second International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications, Seattle, Washington, USA, 2003.

    Google Scholar 

  53. Barger TS, Brown DE, Alwan M. Health-status monitoring through analysis of behavioral patterns. IEEE Transactions on Systems, Man and Cybernetics A, 2005; 35(1):22–27.

    Article  Google Scholar 

  54. Noguchi K, Somwong P, Matsubara T, Nakauchi Y. Human intention detection and activity support system for ubiquitous autonomy. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation 2003; 2:906–911.

    Article  Google Scholar 

  55. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Annual Conference on Innovative Applications of Artificial 2005.

    Google Scholar 

  56. Tapia EM, Intille SS, Larson K. Activity recognition in the home setting using simple and ubiquitous sensors. In: Proceedings of the Second International Conference on Pervasive Computing 2004; Springer LNCS 3001:158–175.

    Google Scholar 

  57. Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, et al. Inferring activities from interactions with objects. IEEE Pervasive Computing 2004; 3(4):50–57.

    Article  Google Scholar 

  58. Chambers G, Venkatesh S, West G, Bui H. Hierarchical recognition of intentional human gestures for sports video annotation. In: Proceedings of the Sixteenth IEEE Conference on Pattern Recognition 2002; 6.

    Google Scholar 

  59. King R, Lo BPL, Yang GZ. Hand gesture recognition with body sensor networks. In: Proceedings of the Second International Workshop on Body Sensor Networks, Imperial College, London, 2005.

    Google Scholar 

  60. Young SJ, Rusell NH, Thornton JHS. Token passing: a conceptual model for connected speech recognition. Cambridge University Engineering Department, Technical Report, CUED/F-INFENG/TR38, 1989.

    Google Scholar 

  61. Haykin S. Neural networks: a comprehensive foundation, 2nd ed. Upper Saddle River, New Jersey: Prentice Hall, 1994.

    MATH  Google Scholar 

  62. Macq D, Verleysen M, Jespers P, Legat J-D. Analog implementation of a Kohonen map with on-chip learning. IEEE Transactions on Neural Networks 1993; 4(3):456–461.

    Article  Google Scholar 

  63. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin Mathematical Biophysics 1943. 5:115–133.

    Article  MATH  MathSciNet  Google Scholar 

  64. Hebb DO. The organization of behavior. New York: John Wiley and Sons, 1949.

    Google Scholar 

  65. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 1958; 65(6):386–408.

    Article  MathSciNet  Google Scholar 

  66. Minsky ML, Papert S. Perceptrons; an introduction to computational geometry. MIT Press, Cambridge, Massachusetts: MIT Press, 1969.

    MATH  Google Scholar 

  67. Mehrotra K, Mohan CK, Ranka S. Elements of artificial neural networks. Cambridge, Massachusetts: MIT Press, 1997.

    Google Scholar 

  68. Kohonen T. The self-organizing map. Proceedings of the IEEE 1990; 78(9):1464–1480.

    Article  Google Scholar 

  69. Himberg J, Flanagan JA, Mäntyjärvi J. Towards context awareness using symbol clustering map. In: Proceedings of the Workshop for Self-Organizing Maps, Kitakyushu, Japan, 2003; 249–254.

    Google Scholar 

  70. Varsta M, Heikkonen J, Millan JdR. Context learning with the self-organizing map. In: Proceedings of the Workshop on Self-Organizing Maps, Helsinki University of Technology, Finland, 1997.

    Google Scholar 

  71. van Laerhoven K. Combining the self-organizing map and k-means clustering or on-line classification of sensor data. In: Proceedings of the International Conference on Artificial Neural Networks 2001; 464–469.

    Google Scholar 

  72. Barreto G, Araujo A, Ritter H. Time in self-organizing maps: an overview of models. International Journal of Computer Research, Special Issue on Neural Networks: Past, Present and Future 2001; 10(2):139–179.

    Google Scholar 

  73. Yin H, Allinson NM. Towards the optimal Bayes classifier using an extended self-organising map. In: Proceedings of the International Conference on Artificial Neural Networks 1995; 2:45–49.

    Google Scholar 

  74. Ultsch A. Self-organizing neural networks for visualization and classification. In: Proceedings of Information and Classification 1993; 307–313.

    Google Scholar 

  75. Rauber A, Merkl D, Dittenbach M. The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 2002; 13(6):1331–1341.

    Article  Google Scholar 

  76. Fritzke B. Growing grid: a self-organizing network with constant neighbourhood range and adaptation strength. Neural Processing Letters 1995; 2(5):9–13.

    Article  Google Scholar 

  77. Godbole S, Sarawagi S, Chakrabarti S. Scaling multi-class support vector machines using inter-class confusion. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2002; 513–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Thiemjarus, S., Yang, GZ. (2006). Context-Aware Sensing. In: Yang, GZ. (eds) Body Sensor Networks. Springer, London. https://doi.org/10.1007/1-84628-484-8_9

Download citation

  • DOI: https://doi.org/10.1007/1-84628-484-8_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-272-0

  • Online ISBN: 978-1-84628-484-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics