Skip to main content

Solving Computationally Intensive Engineering Problems on the Grid Using Problem Solving Environments

  • Chapter
Grid Computing: Software Environments and Tools

12.6 Conclusions and Future Directions

The use of problem-solving environments provide a visually striking and powerful tool for both developers and users of application code. The visualizations provided allow real-time evaluation of the results generated, and computational steering enables interactivity with running simula- tions. The use of PSEs will grow as even computationally light applications benefit from such techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Foster, and C. Kesselman, The Grid 2: The Blueprint for a New Computing Infrastructure (Elsevier, 2004)

    Google Scholar 

  2. F. Berman, G.C. Fox, and A.J.G. Hey, Grid Computing: Making the Global Infrastructure a Reality (Wiley, 2003)

    Google Scholar 

  3. R.B. Haber, D.A. McNabb, Eliminating Distance in Scientific Computing: An Experiment in Televisualization, International Journal of Supercomputer Applications 4, 71–89 (1990)

    Google Scholar 

  4. K.W. Brodlie, D.A. Duce, J.R. Gallop, J.P.R.B. Walton, and J.D. Wood, Distributed and collaborative Visualization—State of the Art Report, Computer Graphics Forum 23, 223–251 (2004).

    Article  Google Scholar 

  5. J. Wood, H. Wright, and K.W. Brodlie, Collaborative Visualization, in Proceedings of IEEE Visualization 97 (1997), pp. 253–259

    Google Scholar 

  6. C.E. Goodyer, M. Berzins, Eclipse and Ellipse: PSEs for EHL solutions using IRIS Explorer and SCIRun, in Computational Science, ICCS 2002 Part I, Lecture Notes in Computer Science, Vol. 2329, ed. by Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (Springer, 2002), pp. 521–530

    Google Scholar 

  7. K.W. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, A. Gay, GRASPARC—A Problem-solving Environment Integrating Computation and Visualization, in IEEE Visualization (IEEE, 1993), pp. 102–109

    Google Scholar 

  8. C.R. Johnson, M. Berzins, L. Zhukov, R. Coffey, SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes, in Numerical Methods for Fluid Mechanics VI. ICFD’ 98, Oxford ed. by Banies, M.J. (1998), pp. 111–122

    Google Scholar 

  9. G. Allen, E. Seidel, J. Shalf, Scientific Computing on the Grid, Byte 24–32 Spring (2002)

    Google Scholar 

  10. J. Kierzenka, F., S.L.: A BVP Solver Based on Residual Control and the Matlab PSE, ACM Transactions on Mathematical Software 27, 299–316 (2001)

    Article  MATH  Google Scholar 

  11. L.A, Treinish, Interactive, Web-based Three-dimensional Visualizations of Operational Mesoscale WeatherModels, in Proceedings of the Eighteenth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, American Meteorological Society (2002), pp. J159–161

    Google Scholar 

  12. N. Furmento, W. Lee, A. Mayer, S. Newhouse, J. Darlington, ICENI: An Open Grid Service Architecture Implemented with Jini, in Proceedings of SuperComputing 2002 (2002)

    Google Scholar 

  13. J. Chin, J. Harting, S. Jha, P. Coveney, A. Porter, S. Pickles, Steering in Computational Science: Mesoscale Modelling and Simulation, Contemporary Physics 44, 417–434 (2003)

    Article  Google Scholar 

  14. P. Watson, Databases and the Grid, in Grid Computing: Making the global infrastructure a reality0, ed. by. Berman, F., Fox, G.C., Hey, A.J.G., (Wiley, 2003), pp. 363–384

    Google Scholar 

  15. S.G. Parker, C.R. Johnson, SCIRun: A Scientific Programming Environment for Computational Steering, in Proceedings of Supercomputer’ 95, New York, ed. by Meuer, H.W. (Springer-Verlag, 1995)

    Google Scholar 

  16. J.P.R.B. Walton, Now You See It—Interactive Visualisation of Large Datasets, in Applications of Supercomputers in Engineering III, ed. by Brebbia, C.A., Power, H. (Computatational Mechanics Publications/Elsevier Applied Science, 1993)

    Google Scholar 

  17. Scientific Computing and Imaging Institute (SCI), SCIRun: A Scientific Computing Problem solving Environment (2002), http://software.sci.utah.edu/scirun.html

    Google Scholar 

  18. J.D. Mulder, J.J. van Wijk, R. van Liere, A Survey of Computational Steering Environments, Future Generation Computer Systems 15, 119–129 (1999)

    Article  Google Scholar 

  19. J.M. Brooke, P.V. Coveney, J. Harting, S. Jha, S.M. Pickles, R.L. Pinning, A.R. Porter, Computational steering in RealityGrid, in Proceedings of the All Hands Meeting 2003, EPSRC, ed. by Cox, S. (2003), pp. 885–888

    Google Scholar 

  20. J.W. Wood, K.W. Brodlie, J.P.R. Walton, gViz: Visualization and Computational Steering for e-Science, in, ed. by Cox, S. Proceedings of the All Hands Meeting 2003, EPSRC (2003), 164–171

    Google Scholar 

  21. D. Dowson, P. Ehret, Past, Present, and Future Studies in Elastohydrodynamics, in Proceedings of the Institution of Mechanical Engineers Part J, Journal of Engineering Tribology 213, 317–333 (1999)

    Google Scholar 

  22. C.H. Venner, A.A. Lubrecht, Multilevel Methods in Lubrication (Elsevier, 2000)

    Google Scholar 

  23. C.E. Goodyer, Adaptive Numerical Methods for Elastohydrodynamic Lubrication. PhD thesis, University of Leeds, Leeds, England (2001)

    Google Scholar 

  24. H. Wright, K.W. Brodlie, T. David, Navigating High-dimensional Spaces to Support Design Steering, in VIS 2000 (IEEE, 2000), pp. 291–296

    Google Scholar 

  25. H. Wright, J.P.R.B. Walton, HyperScribe: A Data Management Facility for the Data-flow Visualization Pipeline, Technical Report IETR/4, NAG (1996)

    Google Scholar 

  26. M.A. Walkley, J. Wood, K.W. Brodlie, A distributed collaborative problem-solving Environment, in Computational Science, ICCS 2002 Part I, Lecture Notes in Computer Science, Vol. 2329, ed. by Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G., (Springer, 2002), pp. 853–861

    Google Scholar 

  27. Message Passing Interface Forum, MPI: A Message-passing Interface Standard, International Journal of Supercomputer Applications 8, (1994)

    Google Scholar 

  28. C.R. Johnson, S.G. Parker, Applications in Computational Medicine Using SCIRun: A Computational Steering Programming Environment, in Proceedings of Supercomputer’ 95, New York, ed. by Meuer, H.W. (Springer-Verlag, 1995), pp. 2–19

    Google Scholar 

  29. D. de St. Germain, J. McCorquodale, S. Parker, C.R. Johnson, Uintah: A Massively Parallel Problem Solving Environment, in Ninth IEEE International Symposium on High Performance and Distributed Computing (2000)

    Google Scholar 

  30. I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, International Journal of Supercomputer Applications 11, 115–128 (1997)

    Article  Google Scholar 

  31. C.E. Goodyer, J. Wood, M. Berzins, A parallel Grid-based PSE for EHL problems, in Applied Parallel Computing, Proceedings of PARA’ 02, Lecture Notes in Computer Science, Vol. 2367, ed. by Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V., (Springer, 2002), pp. 523–532

    Google Scholar 

  32. K.W. Brodlie, S. Mason, M. Thompson, M.A. Walkley, J.W. Wood, Reacting to a Crisis: Benefits of Collaborative Visualization and Computational Steering in a Grid Environment, in Proceedings of the All Hands Meeting 2002 (2002)

    Google Scholar 

  33. C.E. Goodyer, R. Fairlie, D.E. Hart, M. Berzins, L.E. Scales, Adaptive Techniques for Elastohydrodynamic Lubrication Solvers, in Transient Processes in Tribology: Proceedings of the 30th Leeds-Lyon Symposium on Tribology, ed. by Dalmaz et al. (Elsevier, 2004)

    Google Scholar 

  34. C.E. Goodyer, M. Berzins, P.K. Jimack, L.E. Scales, Grid-based Numerical Optimization in a Problem-solving Environment, in Proceedings of the All Hands Meeting 2003, EPSRC, ed. by Cox, S. (2003), pp. 854–861

    Google Scholar 

  35. N. Karonis, B. Toonen, I. Foster, MPICH-G2: A Grid-enabled Implementation of the Message Passing Interface, Journal of Parallel and Distributed Computing 63, 551–563 (2003)

    Article  MATH  Google Scholar 

  36. R. Fairlie, C.E. Goodyer, M. Berzins, L.E. Scales, Numerical Modelling of Thermal Effects in Elastohydrodynamic Lubrication Solvers, in Trobological Research and Design for Engineering Systems, Proceedings of the 29th Leeds-Lyon Symposium on Tribology, ed. by D. Dowson et al. (Elsevier, 2003), pp. 675–683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Goodyer, C.E., Berzins, M. (2006). Solving Computationally Intensive Engineering Problems on the Grid Using Problem Solving Environments. In: Cunha, J.C., Rana, O.F. (eds) Grid Computing: Software Environments and Tools. Springer, London. https://doi.org/10.1007/1-84628-339-6_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-339-6_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-998-2

  • Online ISBN: 978-1-84628-339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics