Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Condition monitoring of machines provides knowledge about the condition of machines. Any deterioration in machine condition can be detected and preventive measures taken at an appropriate time to avoid catastrophic failures This is achieved by monitoring such parameters as vibration, wear debris in oil, acoustic emission etc. The changes in these parameters help in the detection of the development of faults, diagnosis of causes of problem and anticipation of failure. Maintenance/corrective actions can be planned accordingly. The application of condition monitoring in plants results in savings in maintenance costs, and improved availability and safety. The techniques covered in this chapter are performance, vibration, motor stator current, shock pulse, acoustic emission, thermography and wear debris monitoring. The instrumentation required, method of analysis and applications with some examples are explained. Signal processing techniques to gain more benefits of vibration monitoring are covered. Wear debris monitoring methods include magnetic plugs, ferrography, particle counter and spectrographic oil analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, S.-M., Joo, Y.-J., 2005, “Implementation of On-line Performance Monitoring System at Seoincheon and Sinicheon Combined Cycle Power Plant”, Energy, 30, pp. 2383–2401.

    Article  Google Scholar 

  2. Wyatt, C., 2004, “Monitoring Pumps”, World Pumps, December, pp. 17–21.

    Google Scholar 

  3. Vafaei, S., Rahnejat, H., Aini, R., 2002, “Vibration Monitoring of High Speed Spindle Using Spectral Analysis Technique”, Machine Tools & Manufacture, 42, pp. 1223–1234.

    Google Scholar 

  4. Kolbasseff, A., Sunder, R., 2003, “Lessons Learned with Vibration Monitoring Systems in German Nuclear Power Plants”, Progress in Nuclear Energy, 43(1–4), pp. 159–165.

    Article  Google Scholar 

  5. Garcia, B., Burgos, J. C., Alonso, A., 2005, “Winding Deformations Detection in Power Transformers by Tank Vibration Monitoring”, Electric Power Systems Research, 74, pp. 129–138.

    Article  Google Scholar 

  6. Tandon, N., Choudhury, A., 1999, “A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings”, Tribology International, 32, pp. 469–480.

    Article  Google Scholar 

  7. Khemili, I., Chouchane, M., 2005, “Detection of Rolling Element Bearing Defects by Adaptive Filtering”, European Journal of Mechanics A/Solids, 24, pp. 293–303.

    Article  MATH  Google Scholar 

  8. Tandon, N., Mata, S., 1999, “Detection of Defects in Gears by Vibration Monitoring”, In Proceedings of Asia-Pacific Vibration Conference, Singapore, 13–15 December, pp. 161–164.

    Google Scholar 

  9. Walter, P. L., “Trends in Accelerometer Design for Military and Aerospace Applications”, http://www.sensorsmag.com/articles/0399/0399_44/main.shtml.

    Google Scholar 

  10. Chen, Y. D., Du, R., Qu, L. S., 1995, “Fault Features of Large Rotating Machinery and Diagnosis Using Sensor Fusion,” Journal of Sound and Vibration, 188(2), 227–242.

    Article  Google Scholar 

  11. ISO 2372, 1974, Mechanical Vibration of Machines with Operating Speeds from 10 to 200 Rev/s — Basis for Specifying Evaluation Standards.

    Google Scholar 

  12. Sahdev, M., “Centrifugal Pumps: Basic Concepts of Operation Maintenance and Troubleshooting, Part II”, http://www.cheresources.com/centrifugalpumps3b.shtml.

    Google Scholar 

  13. Starr, A., Wynne, R., 1996, “A Review of Condition Based Maintenance for Electrical Machines”, Chapter 12, In Handbook of Condition Monitoring, Rao, B. K. N., ed., Elsevier Science Ltd, pp. 267–284.

    Google Scholar 

  14. Benbouzid, M. E. H., 2000, “A Review of Induction Motors Signature Analysis as a Medium for Fault Detection”, IEEE Transactions on Industrial Electronics, 47(5), pp. 984–993.

    Article  Google Scholar 

  15. Chu, F., Lu, W., 2005, “Experimental Observation of Nonlinear Vibrations in A Rub-Impact Rotor System”, Journal of Sound and Vibration, 283, pp. 621–643.

    Article  Google Scholar 

  16. Lyon, R. H., 1987, Machinery Noise and Diagnostics, Butterworths, p. 13.

    Google Scholar 

  17. Pachaud, C., Salvetat, R. and Fray, C., 1997, “Crest Factor and Kurtosis Contributions to Identify Defects Including Periodical Impulsive Forces,” Mechanical Systems and Signal Processing, 11(6), pp. 903–916.

    Article  Google Scholar 

  18. Badaoui, M. El, Guillet, F., Daniere, J., 2004, “New Applications of the Real Cepstrum to Gear Signals, Including Definition of a Robust Fault Indicator”, Mechanical Systems and Signal Processing, 18(2004), pp. 1031–1046.

    Article  Google Scholar 

  19. Badaoui, M. El, Antoni, J., Guillet, F., Daniere, J., 2001, “Use of the Moving Cepstrum Integral to Detect and Localise Tooth Spalls in Gears”, Mechanical Systems and Signal Processing, 15(5), pp. 873–885.

    Article  Google Scholar 

  20. Samanta, B., Al-Balushi, K. R., 2003, “Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features,” Mechanical Systems and Signal Processing, 17(2), pp. 317–328.

    Article  Google Scholar 

  21. Yang, D.-M., Penman, J., 2000, “Intelligent Detection of Induction Motor Bearing Faults Using Current and Vibration Monitoring”, In Proceedings of COMADEM 2000, Texas, 3–8 December, pp. 461–470.

    Google Scholar 

  22. Ramakrishna, K. M., Yadava, G. S., Tandon, N., 2001, “Fault Diagnosis in Electrical Motors Using Current and Vibration Monitoring–A Review”, In Proceedings International Seminar on Electrical Systems & Reliability, New Delhi, 17–19 October, pp. 105–124.

    Google Scholar 

  23. Tandon, N., Mata, S., 1999, “Detection of Defects in Gears by Acoustic Emission Measurements”, Journal of Acoustic Emission, 17(1–2), pp. 23–27.

    Google Scholar 

  24. Yoshioka, T., Fujiwara, T., 1984, “Application of Acoustic Emission Technique to Detection of Rolling Bearing Failure”, In Acoustic Emission Monitoring and Analysis in Manufacturing, Dornfield, D. A., ed., ASME, New York, pp. 55–75.

    Google Scholar 

  25. Tandon, N., Nakra, B. C., 1990, “Defect Detection in Rolling Element Bearings by Acoustic Emission Method”, Journal of Acoustic Emission, 9(1), pp. 25–28.

    Google Scholar 

  26. Jamaludin, N., Mba, D., 2002, “Monitoring Extremely Slow Rolling Element Bearings: Part I”, NDT&E International, 35, pp. 349–358.

    Article  Google Scholar 

  27. Miettinen, J. andersson, P., 2000, “Acoustic Emission of Rolling Bearings Lubricated with Contaminated Grease”, Tribology International, 33, pp. 777–787.

    Article  Google Scholar 

  28. Mba, D., Hall, L. D., 2002, “The Transmission of Acoustic Emission across Largescale Turbine Rotors”, NDT&E International, 35, pp. 529–539.

    Article  Google Scholar 

  29. El-Ghamry, M. H., Reuben, R. L., Steel, J. A., 2003, “The Development of Automated Pattern Recognition and Statistical Feature Isolation Techniques for the Diagnosis of Reciprocating Machinery Faults Using Acoustic Emission”, Mechanical Systems and Signal Processing, 17(4), pp. 805–823.

    Article  Google Scholar 

  30. Chiou, Y. C., Lee, R. T. and Tsai, C. Y., 1998, “An On-line Hall-effect Device for Monitoring Wear Particle in Oils,” Wear, 223, pp. 44–49.

    Article  Google Scholar 

  31. Myshkin, N. K., Markova, L. V., Semenyuk, M. S., Kong, H., Han, H.-G. and Yoon, E.-S., 2003, “Wear Monitoring Based on the Analysis of Lubricant Contamination by Optical Ferroanalyzer”, Wear, 255, pp. 1270–1275.

    Article  Google Scholar 

  32. Kirk, T.B, Panzera, D., Anamalay, R. V. and. Xu, Z.L, 1995, “Computer Image Analysis of Wear Debris for Machine Condition Monitoring and Fault Diagnosis,” Wear, 181–183, pp. 717–722.

    Google Scholar 

  33. Instruction Manual — Spectrex Laser Particle Counter, Spectrex Corporation, California, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tandon, N., Parey, A. (2006). Condition Monitoring of Rotary Machines. In: Wang, L., Gao, R.X. (eds) Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/1-84628-269-1_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-269-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-268-3

  • Online ISBN: 978-1-84628-269-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics