Skip to main content

Thin-film Engineering by Atomic-layer Deposition for Ultra-scaled and Novel Devices

  • Chapter
Materials for Information Technology

Part of the book series: Engineering Materials and Processes ((EMP))

Conclusion

ALD is shown to be a suitable technique for fabricating most advanced devices in microelectronics, spintronics, molecular electronics, and neuroelectronics. Growth temperature, surface preparation and functionalization, and precursor combinations, when properly selected, allow achieving the desired film properties. Improvements in ALD film quality require a deeper knowledge of the growth mechanisms involved, while substrates, precursors, and deposition parameters change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  Google Scholar 

  2. I. ŽutiĆ, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  3. A. W. Gosh, P. S. Damle, S. Datta, and A. Nitzan, MRS Bull. 29, 391 (2004)

    Google Scholar 

  4. P. Fromherz, in: Nanoelectronics and Information Technology (Ed.: R. Waser), Wiley-VCH, Berlin 2003, p. 781

    Google Scholar 

  5. G. Lucovsky, Y. Wu, H. Niimi, V. Misra and J. C. Phillips, Appl. Phys. Lett. 74, 2005 (1999). A good and thin interface layer limits both the decrease of the gate oxide stack κ, and of the device mobility due to remote phonon and Coulomb scattering

    Google Scholar 

  6. M. Ritala and M. Leskelä, in: Handbook of Thin Film Materials (Ed.: H. S. Nalwa) vol. 1, Academic, San Diego CA 2002, p. 103

    Google Scholar 

  7. L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen and M. Nieminen, Phys. Stat. Sol. (a) 201, 1433 (2004), and J. J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films (in press)

    Google Scholar 

  8. G. V. Samsonov and I. Ya. Gil’man, Poroshkovaya Metallurgiya 13, 73 (1974)

    Google Scholar 

  9. S. Jeon and H. Hwang, J. Appl. Phys. 93, 6393 (2003)

    Article  Google Scholar 

  10. G. Scarel, E. Bonera, C. Wiemer, G. Tallarida, S. Spiga, M. Fanciulli et al., Appl. Phys. Lett. 85, 630 (2004), and G. Seguini, E. Bonera, S. Spiga, G. Scarel, and M. Fanciulli, Appl. Phys. Lett. (in press)

    Article  Google Scholar 

  11. A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, J. All. Comp. 242, 41 (1996)

    Article  Google Scholar 

  12. T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori et al., Microelectron. Eng. 72, 283 (2004)

    Article  Google Scholar 

  13. R. L. Puurunen, Chem. Vap. Dep. 10, 159 (2004)

    Article  Google Scholar 

  14. L. Jeloaica, A. Estève, M. Djafari Rouhani, and D. Estève, Appl. Phys. Lett. 83, 542 (2003)

    Article  Google Scholar 

  15. M. K. Gobbert, V. Prasad, and T. S. Cale, J. Vac. Sci. Technol. B 20, 1031 (2002), and M. Ylilammi, Thin Solid Films 279, 124 (1996)

    Article  Google Scholar 

  16. R. L. Puurunen, Chem. Vap. Dep. 9, 249 (2003), and R. L. Puurunen, Chem. Vap. Dep. 9, 327 (2003)

    Article  Google Scholar 

  17. Y. B. Kim, M. Tuominen, I. Raaijmakers, R. de Blank, R. Wilhelm, and S. Haukka, Electrochem. Solid-State Lett. 3, 346 (2000)

    Article  Google Scholar 

  18. L. T. Zhuravlev, Colloids Surf. A Physicochem. Eng. Aspects 173, 1 (2000)

    Article  Google Scholar 

  19. J. H. Han, G. Gao, Y. Widjaja, E. Garfunkel, and C. B. Musgrave, Surf. Sci. 550, 199 (2004)

    Article  Google Scholar 

  20. A. Kytökivi and S. Haukka, J. Phys. Chem. B 101, 10365 (1997)

    Article  Google Scholar 

  21. M. A. Alam and M. L. Green, J. Appl. Phys. 94, 3403 (2003), and M. L. Green, M.-Y. Ho, B. Busch, G. D. Wilk, T. Sorsch et al., J. Appl. Phys. 92, 7168 (2002)

    Article  Google Scholar 

  22. A. Satta, A. Vantomme, J. Schuhmacher, C. M. Whelan, V. Sutcliffe, and K. Maex, Appl. Phys. Lett. 84, 4571 (2004)

    Article  Google Scholar 

  23. G. Scarel, C. Wiemer, S. Ferrari, G. Tallarida, and M. Fanciulli, Proc. Estonian Acad. Sci. Phys. Math. 52, 308 (2003), and G. Scarel, S. Ferrari, S. Spiga, G. Tallarida, C. Wiemer, and M. Fanciulli, J. Vac. Sci. Technol. A 21, 1359 (2003)

    Google Scholar 

  24. G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari, and M. Fanciulli, Mat. Sci. Eng. B 109, 11 (2004)

    Google Scholar 

  25. K. Kukli, M. Ritala, J. Aarik, T. Uustare, and M. Leskelä, J. Appl. Phys. 92, 1833 (2002)

    Article  Google Scholar 

  26. S. M. George, ALD2004 Congress, Helsinki (Finland) August 16–18, 2004

    Google Scholar 

  27. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo et al., Nat. Mater. 1, 241 (2002)

    Article  Google Scholar 

  28. S. F. Bent, R. Chen, J. Hong, D. Porter, P. McIntyre, H. Kim et al., ALD2004 Congress, Helsinki (Finland) August 16–18, 2004

    Google Scholar 

  29. Y. Xu and C. B. Musgrave, Chem. Mater. 16, 646 (2004)

    Article  Google Scholar 

  30. C, Wiemer, C. Marchiori, G. Scarel, S. Spiga, S. Baldovino, S. Ferrari et al., WoDim 2004, Kinsale (Ireland) June 28–30, 2004

    Google Scholar 

  31. G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Baldovino, E. Bonera et al., E-MRS 2004 Spring Meeting, Strasbourg (France) May 24–28, 2004

    Google Scholar 

  32. M. Fanciulli, S. Spiga, G. Scarel, G. Tallarida, C. Wiemer, G. Seguini, Mat. Res. Soc. 786, 341 (2004), and E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D’Emic, P. Kozlowski et al., Appl. Phys. Lett. 85, 2334 (2004)

    Google Scholar 

  33. G. Scarel, S. Ferrari, S. Spiga, G. Tallarida, C. Wiemer, E. Bonera et al., IV Silicon Workshop 2003, Genova (Italy) February 12–14 2003

    Google Scholar 

  34. B. S. Lim, A. Rahtu, and R. G. Gordon, Nat. Mater. 2, 749 (2003)

    Article  Google Scholar 

  35. O. Nilsen, H. Fjellvåg, and A. Kjekshus, ALD2004 Congress, Helsinki (Finland) August 16–18, 2004

    Google Scholar 

  36. G. Scarel, C. Wiemer, G. Tallarida, and M. Fanciulli, MDM-INFM Biennial Report 2002–2003

    Google Scholar 

  37. F. Wallrapp and P. Fromherz, DPG-Spring Meeting, Regensburg (Germany) March 8–12, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Scarel, G., Fanciulli, M. (2005). Thin-film Engineering by Atomic-layer Deposition for Ultra-scaled and Novel Devices. In: Zschech, E., Whelan, C., Mikolajick, T. (eds) Materials for Information Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-235-7_3

Download citation

  • DOI: https://doi.org/10.1007/1-84628-235-7_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-941-8

  • Online ISBN: 978-1-84628-235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics