Skip to main content

Survey of Thermophotovoltaic (TPV) Devices

  • Chapter
Mid-infrared Semiconductor Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Nelson, TPV Systems and State of the Art Development, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 3–17

    Google Scholar 

  2. T.J. Coutts, A review of progress in thermophotovoltaic generation of electricity, Renewable and Sustainable Energy Reviews, 3 (1999) 77–184.

    Article  Google Scholar 

  3. E. Kittl, Unique correlations between blackbody radiation and optimum energy gap for a photovoltaic conversion device, Conf. Rec. 10 th IEEE Photovoltaics Specialists Conf. (1974) 103–106.

    Google Scholar 

  4. B. Wernsman, R.R. Siergiej, S.D. Link et al., Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control, IEEE Trans. Electron Devices 51,3 (2004) 512–515.

    Article  ADS  Google Scholar 

  5. R.J. Wehrer, M.W. Wanlass, D. Taylor et al., 0.52 eV InGaAs/InPAs thermophotovoltaic cells, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, and J. Luther, eds., American Institute of Physics, 2004, 445–452.

    Google Scholar 

  6. T.J. Coutts, Thermophotovoltaic generation of electricity, Ch. 11 in Clean Electricity from Photovoltaics, M.D. Archer and R. Hill, eds. (Imperial College Press, 2001).

    Google Scholar 

  7. V.M. Andreev, Solar cells for TPV converters, in Next Generation Photovoltaics: High Efficiency though Full Spectrum Utilization, A. Marti and A. Luque, eds., Inst. Physics Publishing, Bristol, (2004) 246–273.

    Google Scholar 

  8. L. Broman, Thermophotovoltaics biography, Progress in Photovoltaics: Research and Applications, 3 (1995) 65–74.

    Article  Google Scholar 

  9. J.C. Fan, B.-R. Tsaur, and B.J. Palm, Optimal design of high efficiency tandem cells, Conf. Record 16 th IEEE Photovoltaics Specialists Conf. (1982) 692–701.

    Google Scholar 

  10. M. Nell and A.M. Barnett, The spectral p-n junction model for tandem solar cells, IEEE Trans. Electron Devices ED-34 (1987) 257–266.

    Article  ADS  Google Scholar 

  11. M.W. Wanlass, K.A. Emery, T.A. Gessert, Practical considerations in tandem cell modeling, Solar Cells, 27 (1989) 191–204.

    Article  Google Scholar 

  12. G. Charache, GaSb-related materials and devices, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., American Inst. Physics Conf. Proc., 460, T.J. Coutts, C.S. Allman, and J.P. Benner, eds., 1998, pp 10–11.

    Google Scholar 

  13. R. Arhenkiel, Minority carrier lifetime in compound semiconductors, Ch. 1 in Current Topics in Photovoltaics, vol. 3, T.J. Coutts, J.D. Meakin, eds., (Academic Press, 1988)

    Google Scholar 

  14. J.E. Parrott, Radiative recombination and photon recycling in photovoltaic cells, Solar Energy Materials 30 (1993) 221–231.

    Article  Google Scholar 

  15. K.L. Miller, H.Z. Fardi, R.E. Hayes, Effect of multiple reflection propagation on photon recycling in GaAs/AlGaAs double heterostructures, J. Applied Physics 75,12 (1994) 8158–8162.

    Article  ADS  Google Scholar 

  16. F. Baldasaro, J.E. Raynolds, G.W. Charache et al., Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs, J. Applied Physics 89,6 (2001) 3319–3327.

    Article  ADS  Google Scholar 

  17. L.D. Woolf, Optimum efficiency of single and multiple bandgap cells in thermophotovoltaic energy conversion, Solar Cells: Their Science, Technology, Applications, and Economics, 19,1 (1986) 19–38.

    Google Scholar 

  18. S. Wojtczuk, Low bandgap InGaAs thermophotovoltaic cells, Proc. Intersoc. Energy Convs. Eng. Conf. 2 (1996) 974–978.

    Google Scholar 

  19. J.L. Gray and A. El-Husseini, A simple parametric study of TPV system efficiency and output power density including a comparison of several TPV materials, Second NREL Conf. on Thermophotovoltaic Generation of Electricity, J.P. Benner, T.J. Coutts, D.S. Grinley, eds. American Inst. Phys. Conf. Proc. 358 (1996) 3–15.

    Google Scholar 

  20. G.D. Cody and T. Tiedje, The potential for utility scale photovoltaic technology in the developed world: 1990–2010 in Energy and the Environment, B. Abeles, A.J. Jacobson, and P. Sheng, eds., (World Scientific, Singapore, 1992) 147–217.

    Google Scholar 

  21. G.D. Cody, Theoretical maximum efficiencies for thermophotovoltaic devices, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf. T.J. Coutts, J.P. Benner, and C.S. Allman, eds., American Inst. Physics Conf. Proc. 460 (1999) 58–67.

    Google Scholar 

  22. T.J. Coutts and J.S. Ward, Thermophotovoltaic and photovoltaic conversion at high-flux densities, IEEE Trans. Electron Devices 46,10 (1999) 2145–2153.

    Article  ADS  Google Scholar 

  23. J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, J. Applied Physics 27 (1955) 777–784.

    Article  ADS  Google Scholar 

  24. W. Shockley and H. Quiesser, Detailed balance limit of efficiency of p-n junction solar cells, J. Applied Physics 32 (1961) 510–519.

    Article  ADS  Google Scholar 

  25. H.J. Hovel, Solar Cells, vol. 11 of Semicoductors and Semimetals, R.K. Willardson and A.C. Beer, eds. (Academic Press, New York, 1975).

    Google Scholar 

  26. J.A. Hutchby and R.L. Fudurich, Theoretical analysis of AlxGa1−xAs-GaAs graded band-gap solar cell, J. Applied Physics 47,7 (1976) 3140–3151.

    Article  ADS  Google Scholar 

  27. S. Wojtczuk, P. Colter, G. Charache, D. DePoy, Performance status of 0.55 eV InGaAs thermophotovoltaic cells, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., American Inst. Physics Conf. Proc., 460, T.J. Coutts, C.S. Allman, and J.P. Benner, eds., 1999, 417–426

    Google Scholar 

  28. V.B. Khalfin, D.Z. Garbuzov, H. Lee et al., Interfacial recombination in In(Al)GaAsSb/GaSb thermophotovoltaic cells, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., American Inst. Physics Conf. Proc., 460, T.J. Coutts, C.S. Allman, and J.P. Benner, eds., 1999, 247–255

    Google Scholar 

  29. G. Charache, P.F. Baldasaro, L.R. Danielson et al., InGaAsSb thermophotovoltaic diode: physics equation, J. Applied Physics 85,4 (1999) 2247–2252.

    Article  ADS  Google Scholar 

  30. B. Wernsman, R.J. Wehrer, D.M. Wilt et al., Effect of graded doping on MIM performance, Thermophotovoltaic Generation of Electricity, Fifth Conf., T.J. Coutts, G. Gauzzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 488–497.

    Google Scholar 

  31. J.M. Borrego, C.A. Wang, P.S. Dutta et al., Performance limits of low bandgap thermophotovoltaic antimonide-based cells for low temperature radiators, Thermophotovoltaic Generation of Electricity, Fifth Conf., T.J. Coutts, G. Gauzzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 498–507.

    Google Scholar 

  32. P.F. Baldasaro, M.W. Dashiell, J.E. Oppenlander et al., System performance projections for TPV energy conversion, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 61–70.

    Google Scholar 

  33. M.W. Dashiell, J.F. Beausang, G. Nichols et al., 0.52 eV quaternary InGaAsSb thermophotovoltaic diode technology, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 404–414.

    Google Scholar 

  34. M. Borrego, S. Saroop, R.J. Gutmann et al., Photon recycling and recombination processes in 0.53 eV p-type InGaAsSb, J. Applied Physics 89,7 (2001) 3573–3759.

    Article  ADS  Google Scholar 

  35. E. F. Shubert, Light-Emitting Diodes, Cambridge University Press, 2003.

    Google Scholar 

  36. B.L. Gelmont and V.I. Ivanov-Omskii, Electron and hole recombination in narrow gap semiconductors, in Semiconductor Physics, V.M. Tuchkevich and V. Ya. Frenkel, eds., (Consultants Bureau, New York, 1986, 169–189.

    Google Scholar 

  37. A. Rogalski, Band-to-band recombination in GaxIn1−xSb, Infrared Physics 27,6 (1987) 353–360.

    Article  ADS  Google Scholar 

  38. Y. Tian, T. Zhou, B. Zhang, H. Jaing, and Y. Jin, The effect of Auger mechanism on n+-p GaInAsSb infrared photovoltaic detectors, IEEE Trans. Electron Devices 46,4 (1999) 656–660.

    Article  ADS  Google Scholar 

  39. R.K. Ahrenkile, R. Ellington, S. Johnston, J. Webb, J. Carapella, and M. Wanlass, Recombination lifetime of InxGa1−x As alloys used in thermophotovoltaic converters, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., American Inst. Physics Conf. Proc., 460, T.J. Coutts, C.S. Allman, and J.P. Benner, eds., 1999, 282–289

    Google Scholar 

  40. S. Anikeev, D. Donetsky, G. Belenky, S. Luryi, C.A. Wang, J.M. Borrego, and G. Nichols, Measurement of the Auger recombination rate in p-type 0.54 eV GaInAsSb by time resolved photoluminescence, Applied Physics Letters, 83,16 (2003) 3317–3319.

    Article  ADS  Google Scholar 

  41. D. Donestsky, S. Anikeev, N. Gu et al., Analysis of recombination processes in 0.5-0.6 eV epitaxial GaInAsSb lattice-matched to GaSb, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 320–328.

    Google Scholar 

  42. D. Donestsky, S. Anikeev, G. Belenky et al., Reduction of interfacial recombination in GaInAsSb/GaSb double heterostructures, Applied Physics Letters 81,25 (2002) 4769–4771

    Article  ADS  Google Scholar 

  43. R.J. Kumar, R.J. Gutmann, J.M. Borrego et al., Recombination parameters in InGaAsSb epitaxial layers for thermophotovoltaic applications, Mat. Res. Soc. Symp. Proc. 763 (2003) B2.4.1–B2.4.6.

    Google Scholar 

  44. R.J. Kumar, J.M. Borrego, P.S. Dutta et al., Auger and radiative recombination coefficients in 0.55-eV InGaAsSb, J. Applied Physics 97 (2005).

    Google Scholar 

  45. R.U. Martinelli, D.Z. Garbuzov, H. Lee et al., Minority-carrier transport in InGaAsSb thermophotovoltaic diodes, Thermophotovoltaic Generation of Electricity, Third NREL Conf., J.P. Benner and T.J. Coutts, eds., American Inst. Physics Conf. Proc. 401 (1997) 389–395.

    Google Scholar 

  46. I. Reich, M.L. Gomez-Herrera, P. Diaz et al., Measurement of Auger lifetime in GaInAsSb/GaSb heterostructures using the photoacoustic technique, Applied Physics Letters 79,7 (2001) 964–966.

    Article  ADS  Google Scholar 

  47. C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Applied Physics 51,8 (1980) 4494–4500.

    Article  ADS  Google Scholar 

  48. M.A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes, IEEE Trans. Electron Devices ED-31,5 (1984) 671–678.

    Article  ADS  Google Scholar 

  49. G.L. Araújo and A. Martí, Limiting efficiencies of GaAs solar cells, IEEE Trans. Electron Devices 37,5 (1990) 1402–1405.

    Article  ADS  Google Scholar 

  50. A. Luque, The requirements of high efficiency solar cells, in Physical Limitations to Photovoltaic Energy Conversion, A. Luque and G.L. Araújo eds., Adam Hilger, Bristol, 1990, 1–42.

    Google Scholar 

  51. P. Landsberg, Limitations to open circuit voltage by recombination, in Physical Limitations to Photovoltaic Energy Conversion, A. Luque and G.L. Araújo eds., Adam Hilger, Bristol, 1990, 134–147.

    Google Scholar 

  52. R. Mertens, R. Girisch, and M. Ghannam, Surface recombination in high efficiency silicon solar cells in Physical Limitations to Photovoltaic Energy Conversion, A. Luque and G.L. Araújo eds., Adam Hilger, Bristol, 1990, 148–173.

    Google Scholar 

  53. C.A. Wang, Antimony-based III–V thermophotovoltaic materials and devices, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 255–266.

    Google Scholar 

  54. P. Baldasaro, E.J. Brown, D.M. DePoy, B.C. Campbell, and J.R. Barrington, The First NREL Conf. on Thermophotovoltaic Generation of Electricity, T.J. Coutts and J.P. Benner, eds., American Inst. Physics Conf. Proc. 321 (1994) 29–43.

    Google Scholar 

  55. B. Bitnar, Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications, Semiconductor Science and Technology 18 (2003) S221–S227.

    Article  ADS  Google Scholar 

  56. V.M. Andreev, V.P. Khvostikov, O.V. Khovostikova, E.V. Oliva, V.D. Rumyantsev, and M.Z. Shvartz, Low-bandgap Ge and InAsSbP/InAs-based TPV cells, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 383–391

    Google Scholar 

  57. V.P. Khostikova, V.D. Rumyantsev, O.A. Khvostikova, M.Z. Shvarts, P.Y. Gazaryan, S.V. Sorokina, N.A. Kaluzhniy, and V.M. Andreev, Thermophotovoltaic cells based on low-bandgap compounds, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 436–444.

    Google Scholar 

  58. O.V. Sulima, A.W. Bett, M.G. Mauk, B. Ya. Ber, and P.S. Dutta, Diffusion of Zn in TPV materials: GaSb, InGaSb, InGaAsSB and InAsSbP, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 402–413.

    Google Scholar 

  59. T. Schlegl, F. Dimroth, A. Ohm, and A.W. Bett, TPV modules based on GaSb substrates Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 285–293.

    Google Scholar 

  60. A.W. Bett and O.V. Sulima, GaSb photovoltaic cells for applications in TPV Generators, Semiconductor Science and Technology 18,5 (2003) S184–S190.

    Article  ADS  Google Scholar 

  61. G. Stollwerck, O.V. Sulima, and A.W. Bett, Characterization and simulation of GaSb device-related properties, IEEE Trans. Electron Devices 47,2 (2000) 448–447.

    Article  ADS  Google Scholar 

  62. D. Martín and C. Algora, “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modeling” Semiconductor Science and Technology 19 (2004) 1040–1052.

    Article  ADS  Google Scholar 

  63. C.M. Ruiz, O. Vigil, C. Algora, D. Martín, V. Bermúdex, and E. Diéguez, “Transparent conducting oxides as antireflection coatings for GaSb TPV Cells” Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 221–229.

    Google Scholar 

  64. H. Yugami, K. Kobayashi, and H. Sai, “A broadband antireflection for GaSb by means of subwavelength grating (SWG) structures” Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 482–486.

    Google Scholar 

  65. C. Bumby, P.A. Shields, R.J. Nicholas, Q. Fan, G. Shmavonyan, L. May, and S.K. Haywood, “Improved efficiency of GaSb/GaAs TPV cells using an offset p-n Junction and off-axis substrates” Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 353–359.

    Google Scholar 

  66. L.M. Fraas, J.E. Avery, W.E. Daniels et al., TPV tube generators for apartment building and industrial furnace applications, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 38–48.

    Google Scholar 

  67. P.S. Dutta, J.M. Borrego, H. Ehsani et al.. GaSb and GaInSb thermophotovoltaic cells using diffused junction technology in bulk substrates, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 392–401

    Google Scholar 

  68. A. Mitric, J. Vincent, R. Caillard, V. Bermudez, E. Dieguez, and T. Duffar, GaInSb bulk crystal growth for thermophotovoltaic application” Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 377–386.

    Google Scholar 

  69. C. Stelian, A. Mitric, V. Corregidor, L.C. alves, N.P. Barradas, and T. Duffar, Bridgman solidification of concentrated GaInSb alloys with variable growth rate, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 415–423.

    Google Scholar 

  70. M.G. Mauk, A.N. Tata, and J.A. Cox, Solution growth of thick III–V antimonide alloy epilayers (InAsSb, InGaSb, InGaAsSb, AlGaAsSb, and InAsSbP) for ‘virtual substrates’” J. Crystal Growth 225 (2001) 236–243.

    Article  ADS  Google Scholar 

  71. M.G. Mauk, A.N. Tata, J.A. Cox, O.V. Sulima, and S. Datta, Ternary and quaternary alloy III–V substrates made by liquid-phase epitaxy” IEE Proc.-Optoelectronics 150,4 (2003) 395–398.

    Article  Google Scholar 

  72. M.P. Mikhailova, S.V. Slododchikov, N.D. Stoyanov, N.M. Stus, Yu.P. Yakovlev, Noncooled InAsSbP/InAs photodiodes for the spectral range 3–5 um, Technical Physics Letters, 22,8 (1996) 672–673.

    ADS  Google Scholar 

  73. M.W. Wanlass, J.J. Carapella, A. Duda, K. Emery, L. Gedvilas, T. Moriarty, S. Ward, J. Webb, and X. Wu, High-performance, 0.6-eV GaInAs/InAsP thermophotovoltaic converters and monolithically interconnected modules, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., T.J. Coutts, C.S. Allman, and J.P. Benner, eds., American Inst. Physics Conf. Proc., 460, 1999 (1998).

    Google Scholar 

  74. S.L. Murray, F.D. Newman, C.S. Murray, D.M. Wilt, M.W. Wanlass, P. Ahrenkiel, R. Messham, and R.R. Siergiej, “MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion” Semiconductor Science and Technology 18,5 (2003) S202–S208.

    Article  ADS  Google Scholar 

  75. M.W. Wanlass, J.S. Ward, K.A. Emery, M.M. Al-Jassim, K.M. Jones, and T.J. Coutts, GaInAs thermophotovoltaic converters, Solar Energy Materials and Solar Cells 41/42 (1996) 405–417.

    Article  Google Scholar 

  76. R.R. Siergiej, B. Wernsman, S.A. Derry et al., 20% efficient InGaAs/InPAs thermophotovoltaic cells, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 414–423.

    Google Scholar 

  77. D. Wilt, R. Wehrer, M. Palmisiano, M. Wanlass, and C. Murray, Monolithic interconnected modules (MIMs) for thermophotovoltaic energy conversion, Semiconductor Science and Technology 18 (2003) S209–S215.

    Article  ADS  Google Scholar 

  78. V. Andreev et al., Low-Bandgap PV and Thermophotovoltaic Cells, Proc. 3 rd World Conf. on Photovoltaic Solar Energy (2003) 15–18.

    Google Scholar 

  79. M.G. Mauk, O.V. Sulima, J.A. Cox, and R.L. Mueller, Low-bandgap (0.3 to 0.5 eV) InAsSbP thermophotoovoltaics, 3 rd World Conf. on Photovoltaic Solar Energy (2003)

    Google Scholar 

  80. V.A. Gevorkyan, V.M. Aroutiounian, K.M. Gambaryan, M.S. Kazaryan, K.J. Touryan, and M.W. Wanlass, Liquid-phase electro-epitaxial growth of low-bandgap p-InAsPSb / n-InAs and p-InAsP / n-InAs diodes heterostructures for thermophotovoltaic application” Thin-Solid Films 451–452 (2004) 124–127.

    Article  Google Scholar 

  81. A. Krier and Y. Mao, 2.5 um light-emitting diodes in InAsSbP/InAs for HF detection, IEE Proc.-Optoelectronics 144,5 (1997) 355–359.

    Article  Google Scholar 

  82. M.J. Kane et al., Bulk and surface recombination in InAs/AlInSb 3.45 um light-emitting diodes, Applied Physics Letters, 76,8 (2000) 943–945.

    Article  MathSciNet  ADS  Google Scholar 

  83. L.-C. Chen, M.-C. Wu, and W-J Chen, Thermal properties of InAssbP homostructure diodes, Japanese J. Applied Physics 37 (1998) 5622–5624.

    Article  ADS  Google Scholar 

  84. B. Bitnar, W. Durisch, A. Meyer, and G. Palfinger, New flexible photocell module for thermophotovoltaic applications, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 465–473

    Google Scholar 

  85. F. Liu and K.L. Wang, Low radiation temperature thermal photovoltaic cells, J. Applied Physics, 97 (2005).

    Google Scholar 

  86. J.P. Connolly and C. Rohr, Quantum well cells for thermophotovoltaics, Semiconductor Science and Technology 18 (2003) S216–S220.

    Article  ADS  Google Scholar 

  87. P. Griffin, I. Ballard, K. Barnham, J. Nelson, A. Zachariou, J. Eppler, G. Hill, C. Button, and M. Pate, The application of quantum well solar cells to thermophotovoltaics, Solar Energy Materials and Solar Cells 50 (1998) 213–219.

    Article  Google Scholar 

  88. Al. Freundlich and A. Ignatiev, Quantum well thermophotovoltaic energy converter, U.S. Patent 6,150,604 (November 21, 2000)

    Google Scholar 

  89. R.K. Huang, C.A. Wang, M.K. Connors, G.W. Turner, and M. Dashiell, Hybrid back surface reflector GaInAsSb thermophotovoltaic devices, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 329–336.

    Google Scholar 

  90. C.A. Wang et al., Fabrication and characterization of wafer-bonded GaInAsSb epitaxy for monolithically interconnected thermophotovoltaic devices, Mat. Res. Soc. Symp. 763 (2003).

    Google Scholar 

  91. C.A. Wang, P.G. Murphy, P.W. O’Brien et al., Wafer-bonded internal back-surface reflectors for enhanced TPV performance, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 473–481.

    Google Scholar 

  92. C.A. Wang, R.K. Wang, M.K. Connors et al., Monolithic series-interconnected GaInAsSb/AlGaAsSb thermophotovoltaic devices wafer bonded to GaAs, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 294–302.

    Google Scholar 

  93. V.M. Andreev, V.P. Khovostikov, V.R. Larionov et al., Tandem GaSb / InGaAsSb thermophotovoltaic cells, Conf. Rec. 26 th IEEE Photovoltaics Specialists Conf. (1997) 935–938.

    Google Scholar 

  94. R.R. Siergiej, S. Sinharoy, T. Valko et al., InGaAsP/InGaAs tandem TPV device, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 480–488.

    Google Scholar 

  95. D.M. Wilt, R.J. Wehrer, W. Maurer, P.P. Jenkins, B. Wernsman, and R.W. Schultz, Buffer layer effects on tandem InGaAs TPV devices, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 453–461.

    Google Scholar 

  96. R. DiMatteo, Method and apparatus for the generation of charge carriers in semiconductor devices, U.S. Patent 6,084,173 (2000).

    Google Scholar 

  97. J.L. Pan, H.K.H. Choy, and C.G. Fonstad, Jr., “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications” IEEE Trans. Electron Devices 47,1 (2000) 241–249.

    Article  ADS  Google Scholar 

  98. J.E. Raynolds, Enhanced electromagnetic energy transfer between a hot and cold body at close spacing due to evanescent fields, Thermophotovoltaic Generation of Electricity, Fourth NREL Conf., T.J. Coutts, J.P. Benner, C.S. Allman, American Inst. Physics Conf. 460 (1999) 49–57.

    Google Scholar 

  99. J.E. Raynolds, Enhanced electromagnetic energy transfer between a hot and cold body at close spacing due to evanescent fields, Report from US Gov’t KAPL-P-000112 (K98151).

    Google Scholar 

  100. R. DiMatteo, P. Grieff, D. Seltzer, et al., Micron-gap thermoPhotoVoltaics (MTPV), Thermophotovoltaic Generation of Electricity, Sixth Conference, A. Gopinath, T.J. Coutts, and J. Luther, eds., AIP Conf. Proc. 738 (American Inst. Physics, 2004) 42–51.

    Google Scholar 

  101. M. Whale, The influence of interference and heterojuntions on the performance of microscale thermophotovoltaic devices, Microscale Thermophysical Engineering 5(200) 89–106.

    Google Scholar 

  102. M.D. Whale and E.G. Cravallo, Modeling and performance of microscale thermophotovoltaic energy conversion devices, IEEE Trans. Electron Devices 17,1 (2002) 130–142.

    Google Scholar 

  103. A. Meulenberg, personal communication, 2003.

    Google Scholar 

  104. M.H. Hannon, M.W. Dashiell, L.C. DiNetta, A.M. Barnett, Lightweight, light trapped, thin GaAs solar cell for spacecraft applications: progress and results update, Conf. Rec. IEEE Photovoltaics Specialists Conf. (1996) 191–194.

    Google Scholar 

  105. O.V. Sulima, Ph.D. Dissertation, Leningrad Technical University (1985) (in Russian).

    Google Scholar 

  106. P.M. Fourspring, D.M. DePoy, J.F. Beausang et al., Thermophotovoltaic spectral control, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 171–179.

    Google Scholar 

  107. A. Gombert, An Overview of TPV emitter technologies, Thermophotovoltaic Generation of Electricity, Fifth Conference, T.J. Coutts, G. Guazzoni, J. Luther, eds., American Inst. Physics Conf. Proc. 653 (2003) 123–131.

    Google Scholar 

  108. W.E. Horne, M.D. Morgan, W.P. Horne, and V.S. Sundaram, Frequency selective filters applied to thermophotovoltaic generators, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 189–197.

    Google Scholar 

  109. A. Narayananaswamy, J. Cybulski, and G. Chen, 1D Metallo-Dielectric Photonic Crystals as selective emitters for thermophotovoltaic applications, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) (2004) 215–220.

    Google Scholar 

  110. H. Sai, H. Yugami, Y. Kanamori, and K. Hane, Spectrally selective thermal radiators and absorbers with periodic microstructured surface for high-temperature applications, Microscale Thermophysical Engineering 7 (2003) 101–115.

    Article  Google Scholar 

  111. H. Sai, T. Kamikawa, Y. Kanamori, K. Hane, H. Yugami, M. Yamaguchi, Thermophotovoltaic generation with selective tungsten emitters, Thermophotovoltaic Generation of Electricity, Sixth Conf., A. Gopinath, T.J. Coutts, J. Luther, eds., American Inst. Physics Conf. 738 (2004) 206–214.

    Google Scholar 

  112. J.M. Gee, J.B. Moreno, S-Y. Lin, and J.G. Fleming, Selective emitters using photonic crystals for thermophotovoltaic energy conversion, IEEE Photovoltaics Specialists Conf. (2002) 896–899.

    Google Scholar 

  113. J.M. Gee, S-Y. Lin, J.G. Fleming, J.B. Moreno, Thermophotovoltaic energy conversion using photonic bandgap selective emitters, U.S. Patent 6,583,350 (2003).

    Google Scholar 

  114. N.-P. Harder and M.A. Green, Thermophotonics, Semiconductor Science and Technology 18,5 (2003) S270–S278.

    Article  ADS  Google Scholar 

  115. I. Tobías and A. Luque, Ideal efficiency and potential of solar thermophotonic, converters under optically and thermally concentrated power flux, IEEE Trans. Electron Devices 49,11 (2002) 2024–2030.

    Article  ADS  Google Scholar 

  116. A. Joullié, F. Jia Hua, F. Karouta, H. Mani, and C. Alibert, III–V alloys based on GaSb for optical communications at 2.0–4.5 µm, Optical Fiber Sources and Detector, SPIE Proceedings of SPIE 587, (1985) 46–57.

    Google Scholar 

  117. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley, New York, 1992).

    Book  Google Scholar 

  118. K. Shim, Principal of energy band gaps of the quaternary alloy AlGaSbAs, Solid State Communications, 134,6 (2005) 437–441.

    Article  ADS  Google Scholar 

  119. J. Bhan, A. Joullié, H. Mani, A.-M. Joullié, and C. Alibert, III–V heterostructures for laser emission in the 2.55 µm wavelength range Materials and Technologies for Optical Communications SPIE Proc. 866 (1987) 126–134.

    Google Scholar 

  120. M.P.C.M. Krijn, Heterojunction band offsets and effective masses in III–V quaternary alloys, Semiconductor Science and Technology 6 (1991) 27–31.

    Article  ADS  Google Scholar 

  121. M. Zierak, J.M. Borrego, I. Bhat, R.J. Gutmann, and G. Charache, Modeling of InGaSb thermophotovoltaic cells and materials, Thermophotovoltaic Generation of Electricity, Third NREL Conf., J.P. Benner and T.J. Coutts, eds. American Inst. Physics Conf. 401 (2003) 55–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mauk, M.G. (2006). Survey of Thermophotovoltaic (TPV) Devices. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_21

Download citation

Publish with us

Policies and ethics