Skip to main content

PET and PET/CT Imaging in Urologic Tumors

  • Chapter
Positron Emission Tomography
  • 2323 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollack HM, McClennan BL, editors. Clinical Urography. Philadelphia: Saunders, 2000.

    Google Scholar 

  2. Nitzche EU, Choi Y, Killion D, et al. Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis. Kidney Int 1993;44:985–996.

    Google Scholar 

  3. Chen BC, Germano G, Huang S-C, et al. A new noninvasive quantification of renal blood flow with N-13 ammonia, dynamic positron emission tomography and a two-compartment model. J Am Soc Nephrol 1992;3:1295–1306.

    PubMed  CAS  Google Scholar 

  4. Shreve P, Chiao P-C, Humes HD, Schwaiger M, Gross MD. Carbon-11 acetate PET imaging of renal disease. J Nucl Med 1995;36:1595–1601.

    PubMed  CAS  Google Scholar 

  5. Szabo Z, Speth RC, Brown PR, et al. Use of positron emission tomography to study AT1 receptor regulation in vivo. J Am Soc Nephrol 2001;12:1350–1358.

    PubMed  CAS  Google Scholar 

  6. Robson CJ, Churchill BM, Anderson W. Results of radical nephrectomy for renal cell carcinoma. J Urol 1969;101:297–301.

    PubMed  CAS  Google Scholar 

  7. Skinner DG, Colvin RB, Vermillion CD, et al. Diagnosis and management of renal cell carcinoma: a clinical and pathological study of 309 cases. Cancer (Phila) 1971;28:1165.

    Article  PubMed  CAS  Google Scholar 

  8. Fuhrman SA, Lasky LC, Limus C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 1982;6:665.

    Article  Google Scholar 

  9. Smith SJ, Bosniak MA, Megibow AJ, et al. Renal cell carcinoma: earlier discovery and increased detection. Radiology 1989;170:699–703.

    PubMed  CAS  Google Scholar 

  10. Bosniak MA. The current radiographic approaches to renal cysts. Radiology 1986;158:1–10.

    PubMed  CAS  Google Scholar 

  11. Wolfe JS Jr. Evaluation and management of cystic renal masses. J Urol 1998;159:1120–1133.

    Article  Google Scholar 

  12. Bosniak MA, Megibow AJ, Hulnick DH, et al. CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR 1988;151:497–501.

    PubMed  CAS  Google Scholar 

  13. Licht MR. Renal adenoma and oncocytoma. Semin Urol Oncol 1995;13:262–266.

    PubMed  CAS  Google Scholar 

  14. Wehle MJ, Grebstald H. Contraindications to needle aspiration of a solid renal mass: tumor dissemination by renal needle aspiration. J Urol 1986;136:446–448.

    PubMed  CAS  Google Scholar 

  15. Bosniak MA, Rofsky NM. Problems in the detection and characterization of small renal masses. Radiology 1996;198:638–641.

    PubMed  CAS  Google Scholar 

  16. Licht MR, Novick AC. Nephron sparing surgery for renal cell carcinoma. J Urol 1993;149:1–7.

    PubMed  CAS  Google Scholar 

  17. Butler BP, Novick AC, Miller DP, et al. Management of small unilateral renal cell carcinomas: radical versus nephron-sparing surgery. Urology 1995;45:34–41.

    Article  PubMed  CAS  Google Scholar 

  18. Wahl RL, Harney J, Hutchins G, Grossman HB. Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. J Urol 1991;146:1470.

    PubMed  CAS  Google Scholar 

  19. Goldenberg MA, Mayo-Smith WW, Papanicolaou N, Fischman AJ, Lee MJ. FDG-PET characterization of renal masses: preliminary experience. Clin Radiol 1997;52:510–515.

    Article  Google Scholar 

  20. Ramdave S, Thomas GW, Berlangieri SU, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 2001;166:825–830.

    Article  PubMed  CAS  Google Scholar 

  21. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. RadioGraphics 1999;19:61–77.

    PubMed  CAS  Google Scholar 

  22. Zhuang H, Duarte PS, Pourdehnad M, et al. Standardized uptake value as a unreliable index of renal disease on fluorodeoxyglucose PET imaging. Clin Nucl Med 2000;25:358–360.

    Article  PubMed  CAS  Google Scholar 

  23. Shreve PD, Miyauchi T, Wahl RL. Characterization of primary renal cell carcinoma by FDG PET. Radiology 1998;209;P94.

    Google Scholar 

  24. Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F-18 positron emission tomography for detection of renal cell carcinoma. J Urol 2004;17:1806–1809.

    Article  Google Scholar 

  25. Aide N, Cappele O, Bottet P, Bensadoun H, Regeasse A, Comoz F, et al. Efficiency of [(18)F]FDG PET in characterizing renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging 2003;30:1236–1245.

    Article  PubMed  Google Scholar 

  26. Majhail NS, Urbain J-LCP, Olencki TE, et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 2003;21:3995–4000.

    Article  PubMed  Google Scholar 

  27. Safaei A, Figlin R, Hoh CK, Silverman DH, Seltzer M, Phelps ME, Czernin J. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 2022; 57:56–62.

    Google Scholar 

  28. Jadvar H, Kherbache HM, Pinski JK, Conti PS. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol 2003;60:395–400.

    PubMed  CAS  Google Scholar 

  29. Seto E, Segall GM, Terris MK. Positron emission tomography detection of osseous metastases of renal cell carcinoma not identified on bone scan. Urology 2000;55:286P.

    Article  Google Scholar 

  30. Borner AR, Langen K-J, Herzog H. Whole-body kinetics and dosimetry of cis-4[18F]fluoro-L-proline. Nucl Med Biol 2001;28:287–292.

    Article  PubMed  CAS  Google Scholar 

  31. Shreve PD, Wahl RL. Carbon-11 acetate PET imaging of renal cell carcinoma. J Nucl Med 1999;40:257P.

    Google Scholar 

  32. Catalona WJ. Bladder carcinoma. J Urol 1980;123:35–36.

    PubMed  CAS  Google Scholar 

  33. Walsh JW, Amendola MA, Konerding KF, et al. Computed tomography detection of pelvic and inguinal lymph node metastases from primary and recurrent pelvic malignant disease. Radiology 1980;137:157–166.

    PubMed  CAS  Google Scholar 

  34. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL. Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med 1997;24:615–620.

    PubMed  CAS  Google Scholar 

  35. Heicappell R, Muller-Mattheis V, Reinhardt M, et al. Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[18F]-2-deoxy-D-glucose. Eur Urol 1999;36:582–587.

    Article  PubMed  CAS  Google Scholar 

  36. Bachor R, Kotzerke J, Reske SN, Hautmann R. Lymph node staging of bladder carcinoma with positron emission tomography. Urologe A 1999;38:46–50.

    Article  PubMed  CAS  Google Scholar 

  37. Ahlstrom H, Malmstrom P-U, Letocha H, Andersson J, Langstrom B, Nilsson S. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol 1996;37:180–185.

    Article  PubMed  CAS  Google Scholar 

  38. de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W. Visualisation of bladder cancer using C-11-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 2002;29:1283–1288.

    Article  PubMed  CAS  Google Scholar 

  39. Yu KK, Hricak H. Imaging prostate cancer. Radiol Clin N Am 2000;38:59–85.

    Article  PubMed  Google Scholar 

  40. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial finding of PET with 2-deoxy-2-[F-18]fluoro-Dglucose. Radiology 1996;199:751–756.

    PubMed  CAS  Google Scholar 

  41. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18F-fluorine-labeled deoxyglucose. J Urol 1996;155:994.

    Article  PubMed  CAS  Google Scholar 

  42. Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlechi K, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 2002;59:913–918.

    Article  PubMed  Google Scholar 

  43. Liu IJ, Zafar MB, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001;57:108–111.

    Article  PubMed  CAS  Google Scholar 

  44. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999;36:31–35.

    Article  PubMed  CAS  Google Scholar 

  45. Yu KK, Schidler J, Hricak H, et al. Prostate cancer: prediction of extracapsular extension by endorectal MR imaging and 3D H-MR spectroscopic imaging. Radiology 1999;213:481–488.

    PubMed  CAS  Google Scholar 

  46. Oyen RH, Van Poppel HP, Ameye FE, Van de Voorde WA, Baert AL, Baert AL. Lymph node staging of localized prostate carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology 1994;190:315–322.

    PubMed  CAS  Google Scholar 

  47. Tempany CM, Zhou X, Zerhouni EA, et al. Staging of prostate cancer: results of Radiology Diagnostic Oncology Group project comparison of three MR imaging techniques. Radiology 1994;192:47–54.

    PubMed  CAS  Google Scholar 

  48. Sanz G, Robles JE, Gimenez M, et al. Positive emission tomography with 18-fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int 1999;84:1028–1031.

    Article  PubMed  CAS  Google Scholar 

  49. Seltzer MA, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 1999;162:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  50. Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP, Kao A. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 2003;70:311–315.

    Article  PubMed  Google Scholar 

  51. Sung J, Espiritu JI, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int 2003;92:24–27.

    Article  PubMed  CAS  Google Scholar 

  52. Oyama N, Akino H, Suzuki Y, Kanamaru H, Miwa Y, Tsuka H, et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 2002;4:99–104.

    Article  PubMed  Google Scholar 

  53. Morris MJ, Akhurst T, Larson SM, et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 2005;11:3210–3216.

    Article  PubMed  CAS  Google Scholar 

  54. Hara T, Kosaka N, Shinora N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997;38:842–847.

    PubMed  CAS  Google Scholar 

  55. Hara T, Koska N, Kishi H. PET imaging of prostate cancer using carbon-11 choline. J Nucl Med 1998;39:990–995.

    PubMed  CAS  Google Scholar 

  56. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 2002;42:18–23.

    Article  PubMed  Google Scholar 

  57. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-Choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44:32–38.

    Article  PubMed  Google Scholar 

  58. Yamaguchi T, Lee J, Uemura H, et al. Prostate cancer: a comparative study of (11)C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32(7):742–748.

    Article  PubMed  CAS  Google Scholar 

  59. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. CCholine positron emission tomography in prostate cancer: primary staging and recurrent staging. Urol Int 2005;74:214–220.

    Article  PubMed  CAS  Google Scholar 

  60. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003;44:331–335.

    PubMed  Google Scholar 

  61. Hara T, Yuasa M. Automated synthesis of fluorine-18 labeled choline analogue: 2-fluoroethyl-dimethyl-2-oxytheylammonium. J Nucl Med 1997;38:44P.

    Google Scholar 

  62. DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110–117.

    PubMed  CAS  Google Scholar 

  63. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42:1805–1814.

    PubMed  CAS  Google Scholar 

  64. Price DT, Coleman RE, Liano RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002;168:273–280.

    Article  PubMed  Google Scholar 

  65. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005;173:252–255.

    Article  PubMed  Google Scholar 

  66. Schmid DT, John H, Zwwefel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235:623–628.

    PubMed  Google Scholar 

  67. Shreve PD, Gross MD. Imaging of the pancreas and related diseases with PET carbon-11 acetate. J Nucl Med 1997;38:1305–1310.

    PubMed  CAS  Google Scholar 

  68. Liu RS, Yuan CC, Chang CP, Chou, KL, Chang CW, Ng HT, Yeh SH. Positron emission tomography (PET) with [C-11] acetate (ACE) in detecting malignant gynecologic tumors. Eur J Nucl Med 1998;25:963P.

    Google Scholar 

  69. Shreve PD. Carbon-11 acetate PET imaging of prostate cancer. J Nucl Med 1999;40:60P.

    Google Scholar 

  70. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-Acetate PET imaging of prostate cancer. J Nucl Med 2002;43:181–186.

    PubMed  CAS  Google Scholar 

  71. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2002;29:1380–1384.

    Article  PubMed  CAS  Google Scholar 

  72. Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 2002;29:1492–1495.

    Article  PubMed  CAS  Google Scholar 

  73. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003;30:607–611.

    Article  PubMed  CAS  Google Scholar 

  74. Kotzerke J, Volkmer BG, Glatting G, van der Hoff J, Gschwend JE, Messer P, et al. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 2003;42:25–30.

    PubMed  CAS  Google Scholar 

  75. Macapinlac HA, Humm JL, Akhurst T, Osman I, Pentlow K, Shangde C, et al. Differential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F] fluoro-2-D-glucose (FDG) in androgen independent prostate cancer. Clin Posit Imaging 1999;2:173–181.

    Article  Google Scholar 

  76. Nunez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 2002;43:46–55.

    PubMed  Google Scholar 

  77. Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 2005;173:66–69.

    Article  PubMed  Google Scholar 

  78. Eisenberger MA, Nelson WG. How much can we rely on the level of prostate-specific antigen as an end point for evaluation of clinical trials? A word of caution! J Natl Cancer Inst 1996;88:779–781.

    PubMed  CAS  Google Scholar 

  79. Larson SM, Morris M, Gunther I, et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestoserone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004;45:366–373.

    PubMed  CAS  Google Scholar 

  80. Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 2005;32:344–350.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shreve, P.D. (2006). PET and PET/CT Imaging in Urologic Tumors. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_16

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics