Skip to main content

Principles of Pathophysiology Related to Noninvasive Cardiac Imaging

  • Chapter
  • 659 Accesses

8. Conclusions

The pathophysiology of myocardial ischemia involves a series of progressive changes from the cellular level through perfusion abnormalities, contractile dysfunction, electrocardiographic abnormalities, and finally symptoms. In clinical practice, it has multiple potential manifestations, with atherosclerotic coronary disease being the most important underlying etiology. Uncovering these abnormalities or their underlying causes requires selection of the most appropriate stress method depending on the question being asked, and the clinical status of the patient. A sound understanding of the principles of imaging will contribute to informed interpretation of test results. Only by integrating knowledge of the pathophysiology of myocardial ischemia, the role of the various stress modalities, and the strengths and weaknesses of the available imaging technologies will the best possible test be selected for each patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rong JX, Rangaswamy S, Shen L, et al. Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arterioscler Thromb Vasc Biol 1998;18:1885–1894.

    PubMed  CAS  Google Scholar 

  2. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the non human primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323–340.

    PubMed  CAS  Google Scholar 

  3. Glagov S, Weisenberg E, Zarins C, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:371–375.

    Article  Google Scholar 

  4. Falk E, Shah P, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–671.

    PubMed  CAS  Google Scholar 

  5. Farb A, Burke A, Tang A, et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–1363.

    PubMed  CAS  Google Scholar 

  6. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844–2850.

    PubMed  CAS  Google Scholar 

  7. Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary artery stenoses. N Engl J Med 1996;334:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  8. Sirol M, Itskovich VV, Mani V, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004;109:2890–2896.

    Article  PubMed  CAS  Google Scholar 

  9. Morgan-Hughes GJ, Roobotham CA, Owen PE, et al. Highly accurate non-invasive coronary angiography using sub-millimetre multislice computed tomography. Heart 2004;90(suppl II):A56.

    Google Scholar 

  10. Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–2711.

    Article  PubMed  CAS  Google Scholar 

  11. Zaret BL. Second Annual Mario S. Verani, MD, Memorial Lecture: nuclear cardiology, the next 10 years. J Nucl Cardiol 2004;11:393–407.

    Article  PubMed  Google Scholar 

  12. Hofstra L, Liem IH, Dumont E, et al. Visualization of cell death in vivo in patients with acute myocardial infarction. Lancet 2000;356:209–212.

    Article  PubMed  CAS  Google Scholar 

  13. Camici PG, Marraccini P, Lorenzoni R, et al. Coronary haemodynamics and myocardial metabolism in patients with syndrome X: response to pacing stress. J Am Coll Cardiol 1991;17:1461.

    PubMed  CAS  Google Scholar 

  14. Mohri M, Koyanagi M, Egashira K, et al. Angina pectoris caused by coronary microvascular spasm. Lancet 1998;351:1165.

    Article  PubMed  CAS  Google Scholar 

  15. Panting JR, Gatehouse PD, Yang G-Z, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–1953.

    Article  PubMed  Google Scholar 

  16. Prinzmetal M, Kennamer R, Merliss R, et al. Angina pectoris. I. A variant form of angina pectoris: preliminary report. Am J Med 1959;27:375.

    Article  PubMed  CAS  Google Scholar 

  17. Berman ND, McLaughlin PR, Huckell VF, et al. Prinzmetal’s angina with coronary artery spasm. Angiographic, pharmacologic, metabolic and radionuclide perfusion studies. Am J Med 1976;60:727.

    Article  PubMed  CAS  Google Scholar 

  18. Braunwald E. Control of myocardial oxygen consumption. Am J Cardiol 1971;27:416–432.

    Article  PubMed  CAS  Google Scholar 

  19. Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine wasting. Circ Res 1982;50:273–286.

    PubMed  CAS  Google Scholar 

  20. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–813.

    PubMed  CAS  Google Scholar 

  21. Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis 1989;32:73–97.

    Article  PubMed  CAS  Google Scholar 

  22. Wilson RF, Wyche K, Christensen BV, et al. Effects of adenosine on human arterial circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  23. Brown IP, Thompson CI, Belloni FL, et al. Role of nitric oxide in hypoxic coronary vasodilatation in isolated perfused guinea pig heart. Am J Physiol 1993;264:H821–H829.

    PubMed  CAS  Google Scholar 

  24. Jones CJ, Kuo L, Davis MJ, et al. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation 1995;91:1807–1813.

    PubMed  CAS  Google Scholar 

  25. Duffy SJ, Castle SF, Harper RW, et al. Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation 1999;100:1951–1957.

    PubMed  CAS  Google Scholar 

  26. Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 1998;16:1081–1098.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson PC. Autoregulation of blood flow. Circ Res 1986:59:483–495.

    PubMed  CAS  Google Scholar 

  28. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994;330:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  29. Wei W, Tong KL, Belcik T, et al. Detection of coronary stenoses at rest with myocardial contrast echocardiography. Circulation 2005;112:1154–1160.

    Article  PubMed  Google Scholar 

  30. Feigl EO. Neural control of coronary blood flow. J Vasc Res 1998;35:85–92.

    Article  PubMed  CAS  Google Scholar 

  31. Leong-Poi H, Rim S, Le E, et al. Perfusion versus function: the ischaemic cascade in demand ischaemia. Circulation 2002;105:987–992.

    Article  PubMed  Google Scholar 

  32. Marban E, Koretsune Y, Corretti M, et al. Calcium and its role in myocardial cell injury during ischaemia and reperfusion. Circulation 1989;80(Suppl 4):80.

    Google Scholar 

  33. Ishizaka H, Kuo L. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ Res 1996;78:50–57.

    PubMed  CAS  Google Scholar 

  34. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974;34:48–55.

    Article  PubMed  CAS  Google Scholar 

  35. Hilton TC, Thompson RC, Williams H, et al. Technetium 99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol 1994;23:1016–1022.

    PubMed  CAS  Google Scholar 

  36. Coyne EP, Belvedere DA, Vande Streek PR, et al. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol 1991;17:1289.

    PubMed  CAS  Google Scholar 

  37. Bol A, Melin A, Vanoverschelde L, et al. Direct comparison of 13N ammonia and 15O water estimates of perfusion with quantification of regional myocardial flow by microspheres. Circulation 1993;87:512–525.

    PubMed  CAS  Google Scholar 

  38. Monaghan MJ. Stress myocardial contrast echocardiography. Heart 2003;89:1391–1393.

    Article  PubMed  CAS  Google Scholar 

  39. Senior R, Janardhanan R, Jeetly P, et al. Myocardial contrast echocardiography for distinguishing ischemic from nonischemic first-onset acute heart failure. Insights into the mechanism of acute heart failure. Circulation 2005;112:1587–1593.

    Article  PubMed  Google Scholar 

  40. Giang TH, Nanz D, Coulden R, et al. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multicentre experience. Eur Heart J 2004;25:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  41. Manning WJ, Atkinson DJ, Grossman W, et al. First pass nuclear magnetic resonance imaging studies using gadolinium-DPTA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–965.

    PubMed  CAS  Google Scholar 

  42. Theroux P, Franklin D, Ross J Jr, et al. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacological agents in the dog. Circ Res 1974;35:896–908.

    PubMed  CAS  Google Scholar 

  43. Herman MV, Heinle RA, Klein MD, et al. Localised disorders in myocardial contraction. N Engl J Med 1967;227:222.

    Article  Google Scholar 

  44. Forrester JS, Wyatt HL, Daluz PL, et al. Functional significance of regional ischaemic contraction abnormalities. Circulation 1976;54:64–70.

    PubMed  CAS  Google Scholar 

  45. Braunwald E, Kloner RA. The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    PubMed  CAS  Google Scholar 

  46. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999;79:609–634.

    PubMed  CAS  Google Scholar 

  47. Roger VL, Pellikka PA, Oh JK, et al. Identification of multivessel coronary artery disease by exercise echocardiography. J Am Coll Cardiol 1994;24:109.

    PubMed  CAS  Google Scholar 

  48. Beleslin BD, Ostojic M, Stepanovic J, et al. Stress echocardiography in the detection of myocardial ischaemia. Circulation 1994;90:1168–1176.

    PubMed  CAS  Google Scholar 

  49. Henein MY, Anagnostopoulos C, Das SK, et al. Left ventricular long axis disturbances as predictors for thallium perfusion defects in patients with known peripheral vascular disease. Heart 1998;79:295–300.

    PubMed  CAS  Google Scholar 

  50. Severi S, Picano E, Michelassi C, et al. Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease. Circulation 1994;89:1160–1173.

    PubMed  CAS  Google Scholar 

  51. Cain P, Baglin T, Case C, et al. Application of tissue Doppler to interpretation of dobutamine echocardiography: comparison with quantitative angiography. Am J Cardiol 2001;87:525–531.

    Article  PubMed  CAS  Google Scholar 

  52. Marwick TH. Clinical applications of tissue Doppler imaging: a promise fulfilled. Heart 2003;89:1377–1378.

    Article  PubMed  CAS  Google Scholar 

  53. Celutkiene J, Sutherland GR, Laucevicius A, et al. Is post-systolic motion the optimal ultrasound parameter to detect induced ischaemia during dobutamine stress echocardiography? Eur Heart J 2004;25:932–942.

    Article  PubMed  Google Scholar 

  54. Gibbons RJ, Fyke FE, Clements IP, et al. Noninvasive identification of severe coronary artery disease using exercise radionuclide angiography. J Am Coll Cardiol 1988;11:28.

    PubMed  CAS  Google Scholar 

  55. Chua T, Kiat H, Germano G, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and thallium-201 scintigraphy. J Am Coll Cardiol 1994;23:1107–1114.

    PubMed  CAS  Google Scholar 

  56. Germano G, Kiat H, Kavanaugh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–2147.

    PubMed  CAS  Google Scholar 

  57. Weiss AT, Berman DS, Law AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752–759.

    PubMed  CAS  Google Scholar 

  58. Levy R, Rosanski A, Berman DS, et al. Analysis of the degree of pulmonary thallium washout after exercise in patients with coronary artery disease. J Am Coll Cardiol 1983;2:719–728.

    PubMed  CAS  Google Scholar 

  59. Pennell DJ, Underwood SR, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992;70:34.

    Article  PubMed  CAS  Google Scholar 

  60. Wahl A, Paetsch I, Gollesch A, et al. Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia in 1000 consecutive cases. Eur Heart J 2004;25:1230–1236.

    Article  PubMed  Google Scholar 

  61. Vincent GM, Abildskov JA, Burgess MJ, et al. Mechanisms of ischaemic ST-segment displacement. Evaluation by direct current recordings. Circulation 1977;56:559–566.

    PubMed  CAS  Google Scholar 

  62. Gibbons RJ, Balady GJ, Brocker JT, et al. ACC/AHA 2002 guideline update for exercise testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). Available at www.acc.org/clinical/guidelines/exercise/dirIndex.htm. 2002.

    Google Scholar 

  63. Camici PG, Wijns W, Borgers M, et al. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 1997;96:3205–3214.

    PubMed  CAS  Google Scholar 

  64. Tawakol A, Skopici HA, Abrahmam SA, et al. Evidence of reduced resting blood flow in viable myocardial regions with resting asynchrony. J Am Coll Cardiol 2000;36:2146–2153.

    Article  PubMed  CAS  Google Scholar 

  65. Vanoverschelde JLJ, Wijns W, Depre C, et al. Mechanisms of chronic regional postischaemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    PubMed  CAS  Google Scholar 

  66. Bax JJ, van der Wall EE, Harbinson MT. Radionuclide techniques for the assessment of myocardial viability and hibernation. Heart 2004;90(suppl V):v26–v33.

    Article  PubMed  Google Scholar 

  67. Bax JJ, Poldermans D, Elhendy A, et al. Sensitivity, specificity and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol 2001;26:141–186.

    Article  Google Scholar 

  68. Underwood SR, Bax JJ, vom Dahl J, et al. Imaging techniques for the assessment of patients with chronic ischaemic heart failure. Eur Heart J 2004;25:815–836.

    Article  PubMed  Google Scholar 

  69. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischaemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  70. Sato T. Signaling in late ischaemic preconditioning: involvement of mitochondrial K (ATP) channels. Circ Res 1999;85:1113–1114.

    PubMed  CAS  Google Scholar 

  71. Nado T, Minatoguchi S, Fujii K, et al. Evidence for the delayed effect in human ischemic preconditioning: prospective multicenter study for preconditioning in acute myocardial infarction. J Am Coll Cardiol 1999;34:166–174.

    Google Scholar 

  72. Meisel SR, Shapiro H, Radnay J, et al. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol 1998;31:120–125.

    Article  PubMed  CAS  Google Scholar 

  73. Bolli R. Oxygen derived free radicals and postischemic myocardial dysfunction (“stunned myocardium”). J Am Coll Cardiol 1988;12:239–249.

    PubMed  CAS  Google Scholar 

  74. Douglas PS, Ginsburg GS. The evaluation of chest pain in women. N Engl J Med 1996;333:1311–1315.

    Article  Google Scholar 

  75. Cerqueira M, Verani M, Schwaiger M, et al. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan multicentre trial registry. J Am Coll Cardiol 1994;23:384–389.

    PubMed  CAS  Google Scholar 

  76. Hays JT, Mahmarian JJ, Cochran AJ, et al. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993;21:1583–1590.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Harbinson, M., Anagnostopoulos, C.D. (2006). Principles of Pathophysiology Related to Noninvasive Cardiac Imaging. In: Anagnostopoulos, C.D., Nihoyannopoulos, P., Bax, J.J., van der Wall, E. (eds) Noninvasive Imaging of Myocardial Ischemia. Springer, London. https://doi.org/10.1007/1-84628-156-3_1

Download citation

  • DOI: https://doi.org/10.1007/1-84628-156-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-027-6

  • Online ISBN: 978-1-84628-156-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics