Skip to main content

Cardiovascular Magnetic Resonance Imaging: Overview of Clinical Applications

  • Chapter
Cardiac CT Imaging

Summary

Cardiovascular magnetic resonance imaging provides a multifaceted and comprehensive assessment for the diagnosis and treatment of cardiovascular disease, including cardiovascular structures, function, tissue characterization, myocardial perfusion, and metabolism. Applications include the assessment of coronary artery disease, pathologic myocardial substrates, congenital heart disease, thoracic vasculature, valvular function, masses, and electrophysiologically relevant substrates. Advances in technology will continue to lead to novel clinical and research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauck G, von Smekal A, Wolke S, et al. Effects of nuclear magnetic resonance imaging on cardiac pacemakers. Pacing Clin Electrophysiol 1995;18:1549–1555.

    Article  PubMed  CAS  Google Scholar 

  2. Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K. Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 1997;134:467–473.

    Article  PubMed  CAS  Google Scholar 

  3. Vahlhaus C, Sommer T, Lewalter T, et al. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 Tesla? Pacing Clin Electrophysiol 2001;24:489–495.

    Article  PubMed  CAS  Google Scholar 

  4. Gimbel JR, Johnson D, Levine PA, Wilkoff BL. Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. Pacing Clin Electrophysiol 1996;19:913–919.

    Article  PubMed  CAS  Google Scholar 

  5. Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 2004;43:1315–1324.

    Article  PubMed  Google Scholar 

  6. Shellock FG. Prosthetic heart valves and annuloplasty rings: assessment of magnetic field interactions, heating, and artifacts at 1.5 Tesla. J Cardiovasc Magn Reson 2001;3:317–324.

    Article  PubMed  CAS  Google Scholar 

  7. Counter SA, Olofsson A, Grahn HF, Borg E. MRI acoustic noise: sound pressure and frequency analysis. J Magn Reson Imaging 1997;7:606–611.

    PubMed  CAS  Google Scholar 

  8. Francis JM, Pennell DJ. Treatment of claustrophobia for cardiovascular magnetic resonance: use and effectiveness of mild sedation. J Cardiovasc Magn Reson 2000;2:139–141.

    PubMed  CAS  Google Scholar 

  9. Sarji SA, Abdullah BJ, Kumar G, Tan AH, Narayanan P. Failed magnetic resonance imaging examinations due to claustrophobia. Australas Radiol 1998;42:293–295.

    PubMed  CAS  Google Scholar 

  10. Lanzer P, Botvinick EH, Schiller NB, et al. Cardiac imaging using gated magnetic resonance. Radiology 1984;150:121–127.

    PubMed  CAS  Google Scholar 

  11. Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 2000;12:678–688.

    Article  PubMed  CAS  Google Scholar 

  12. Dimick RN, Hedlund LW, Herfkens RJ, Fram EK, Utz J. Optimizing electrocardiograph electrode placement for cardiac-gated magnetic resonance imaging. Invest Radiol 1987;22:17–22.

    PubMed  CAS  Google Scholar 

  13. Storey P, Danias PG, Post M, et al. Preliminary evaluation of EVP 1001-1: a new cardiac-specific magnetic resonance contrast agent with kinetics suitable for steady-state imaging of the ischemic heart. Invest Radiol 2003;38:642–652.

    PubMed  CAS  Google Scholar 

  14. Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001;104:1280–1285.

    PubMed  CAS  Google Scholar 

  15. Carr DH, Brown J, Bydder GM, et al. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. AJR Am J Roentgenol 1984;143:215–224.

    PubMed  CAS  Google Scholar 

  16. Nayak KS, Cunningham CH, Santos JM, Pauly JM. Real-time cardiac MRI at 3 tesla. Magn Reson Med 2004;51:655–660.

    Article  PubMed  Google Scholar 

  17. McGee KP, Debbins JP, Boskamp EB, Blawat L, Angelos L, King KF. Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 2004;19:291–729.

    Article  PubMed  Google Scholar 

  18. Kangarlu A, Burgess RE, Zhu H, et al. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 1999;17:1407–1416.

    Article  PubMed  CAS  Google Scholar 

  19. Budoff MJ, Achenbach S, Duerinckx A. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol 2003;42:1867–1878.

    Article  PubMed  Google Scholar 

  20. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004;44:2173–2181.

    Article  PubMed  Google Scholar 

  21. Bunce NH, Lorenz CH, John AS, Lesser JR, Mohiaddin RH, Pennell DJ. Coronary artery bypass graft patency: assessment with true ast imaging with steady-state precession versus gadolinium-enhanced MR angiography. Radiology 2003;227:440–446.

    PubMed  Google Scholar 

  22. Achenbach S, Kessler W, Moshage WE, et al. Visualization of the coronary arteries in three-dimensional reconstructions using respiratory gated magnetic resonance imaging. Coron Artery Dis 1997;8:441–448.

    PubMed  CAS  Google Scholar 

  23. Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel WG. Coronary arteries: MR angiography with fast contrast-enhanced three-dimensional breath-hold imaging — initial experience. Radiology 1999;210:566–572.

    PubMed  CAS  Google Scholar 

  24. Post JC, van Rossum AC, Bronzwaer JG, et al. Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 1995;92:3163–3171.

    PubMed  CAS  Google Scholar 

  25. Bunce NH, Rahman SL, Keegan J, Gatehouse PD, Lorenz CH, Pennell DJ. Anomalous coronary arteries: anatomic and functional assessment by coronary and perfusion cardiovascular magnetic resonance in three sisters. J Cardiovasc Magn Reson 2001;3:361–369.

    Article  PubMed  CAS  Google Scholar 

  26. Achenbach S, Ropers D, Regenfus M, et al. Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography. Am J Cardiol 2001;88:70E–73E.

    Article  PubMed  CAS  Google Scholar 

  27. Regenfus M, Ropers D, Achenbach S, et al. Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 2000;36:44–50.

    Article  PubMed  CAS  Google Scholar 

  28. Regenfus M, Ropers D, Achenbach S, et al. Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol 2002;90:725–730.

    Article  PubMed  Google Scholar 

  29. Ropers D, Regenfus M, Stilianakis N, et al. A direct comparison of noninvasive coronary angiography by electron beam tomography and navigator-echo-based magnetic resonance imaging for the detection of restenosis following coronary angioplasty. Invest Radiol 2002;37:386–392.

    Article  PubMed  Google Scholar 

  30. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664–1672.

    Article  PubMed  Google Scholar 

  31. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003;108:1772–1778.

    Article  PubMed  Google Scholar 

  32. Nikolaou K, Becker CR, Muders M, et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 2004;174:243–252.

    PubMed  CAS  Google Scholar 

  33. Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002;106:2026–2034.

    Article  PubMed  Google Scholar 

  34. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002;106:296–299.

    Article  PubMed  Google Scholar 

  35. Viles-Gonzalez JF, Poon M, Sanz J, et al. In vivo 16-slice, multi-detector-row computed tomography for the assessment of experimental atherosclerosis: comparison with magnetic resonance imaging and histopathology. Circulation 2004;110:1467–1472.

    Article  PubMed  Google Scholar 

  36. Cranney GB, Lotan CS, Dean L, Baxley W, Bouchard A, Pohost GM. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation 1990;82:154–163.

    PubMed  CAS  Google Scholar 

  37. Rumberger JA, Behrenbeck T, Bell MR, et al. Determination of ventricular ejection fraction: a comparison of available imaging methods. The Cardiovascular Imaging Working Group. Mayo Clin Proc 1997;72:860–870.

    Article  PubMed  CAS  Google Scholar 

  38. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 2002;40:1856–1863.

    Article  PubMed  Google Scholar 

  39. Rominger MB, Bachmann GF, Pabst W, Rau WS. Right ventricular volumes and ejection fraction with fast cine MR imaging in breathhold technique: applicability, normal values from 52 volunteers, and evaluation of 325 adult cardiac patients. J Magn Reson Imaging 1999;10:908–918.

    Article  PubMed  CAS  Google Scholar 

  40. Kaji S, Yang PC, Kerr AB, et al. Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 2001;38:527–533.

    Article  PubMed  CAS  Google Scholar 

  41. Plein S, Smith WH, Ridgway JP, et al. Measurements of left ventricular dimensions using real-time acquisition in cardiac magnetic resonance imaging: comparison with conventional gradient echo imaging. Magma 2001;13:101–108.

    PubMed  CAS  Google Scholar 

  42. Ioannidis JP, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol 2002;39:2059–2068.

    Article  PubMed  Google Scholar 

  43. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004;147:218–223.

    Article  PubMed  Google Scholar 

  44. Lethimonnier F, Furber A, Balzer P, et al. Global left ventricular cardiac function: comparison between magnetic resonance imaging, radionuclide angiography, and contrast angiography. Invest Radiol 1999;34:199–203.

    Article  PubMed  CAS  Google Scholar 

  45. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991;18:959–965.

    PubMed  CAS  Google Scholar 

  46. Kuijpers D, Janssen CH, van Dijkman PR, Oudkerk M. Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 2004;14:1823–1828.

    PubMed  Google Scholar 

  47. Al-Saadi N, Nagel E, Gross M, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 2000;36:1557–1564.

    Article  PubMed  CAS  Google Scholar 

  48. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999;99:763–770.

    PubMed  CAS  Google Scholar 

  49. Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM. Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002;106:2328–2333.

    Article  PubMed  Google Scholar 

  50. Samady H, Choi CJ, Ragosta M, Powers ER, Beller GA, Kramer CM. Electromechanical mapping identifies improvement in function and retention of contractile reserve after revascularization in ischemic cardiomyopathy. Circulation 2004;110:2410–2416.

    Article  PubMed  Google Scholar 

  51. Ansari M, Araoz PA, Gerard SK, et al. Comparison of late enhancement cardiovascular magnetic resonance and thallium SPECT in patients with coronary disease and left ventricular dysfunction. J Cardiovasc Magn Reson 2004;6:549–556.

    Article  PubMed  Google Scholar 

  52. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE. Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 2004;43:2253–2259.

    Article  PubMed  Google Scholar 

  53. Ichikawa Y, Sakuma H, Suzawa N, et al. Late gadolinium-enhanced magnetic resonance imaging in acute and chronic myocardial infarction: improved prediction of regional myocardial contraction in the chronic state by measuring thickness of nonenhanced myocardium. J Am Coll Cardiol 2005;45:901–909.

    Article  PubMed  Google Scholar 

  54. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003;108:1945–1953.

    Article  PubMed  CAS  Google Scholar 

  55. Dong SJ, MacGregor JH, Crawley AP, et al. Left ventricular wall thickness and regional systolic function in patients with hypertrophic cardiomyopathy. A three-dimensional tagged magnetic resonance imaging study. Circulation 1994;90:1200–1209.

    PubMed  CAS  Google Scholar 

  56. Devlin AM, Moore NR, Ostman-Smith I. A comparison of MRI and echocardiography in hypertrophic cardiomyopathy. Br J Radiol 1999;72:258–264.

    PubMed  CAS  Google Scholar 

  57. Schulz-Menger J, Strohm O, Waigand J, Uhlich F, Dietz R, Friedrich MG. The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 2000;101:1764–1766.

    PubMed  CAS  Google Scholar 

  58. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 2003;41:1561–1567.

    Article  PubMed  Google Scholar 

  59. Teraoka K, Hirano M, Ookubo H, et al. Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging 2004;22:155–161.

    Article  PubMed  Google Scholar 

  60. White RD, Obuchowski NA, Gunawardena S, et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: presurgical and postsurgical evaluation by computed tomography magnetic resonance imaging. Am J Card Imaging 1996;10:1–13.

    PubMed  CAS  Google Scholar 

  61. Fattori R, Rocchi G, Celletti F, Bertaccini P, Rapezzi C, Gavelli G. Contribution of magnetic resonance imaging in the differential diagnosis of cardiac amyloidosis and symmetric hypertrophic cardiomyopathy. Am Heart J 1998;136:824–830.

    Article  PubMed  CAS  Google Scholar 

  62. Nemeth MA, Muthupillai R, Wilson JM, Awasthi M, Flamm SD. Cardiac sarcoidosis detected by delayed-hyperenhancement magnetic resonance imaging. Tex Heart Inst J 2004;31:99–102.

    PubMed  Google Scholar 

  63. Shimada T, Shimada K, Sakane T, et al. Diagnosis of cardiac sarcoidosis and evaluation of the effects of steroid therapy by gadolinium-DTPA-enhanced magnetic resonance imaging. Am J Med 2001;110:520–527.

    Article  PubMed  CAS  Google Scholar 

  64. Bocchi EA, Kalil R, Bacal F, et al. Magnetic resonance imaging in chronic Chagas’ disease: correlation with endomyocardial biopsy findings and gallium-67 cardiac uptake. Echocardiography 1998;15:279–288.

    PubMed  Google Scholar 

  65. Buchthal SD, den Hollander JA, Merz CN, et al. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 2000;342:829–835.

    Article  PubMed  CAS  Google Scholar 

  66. Butterworth EJ, Evanochko WT, Pohost GM. The 31P-NMR stress test: an approach for detecting myocardial ischemia. Ann Biomed Eng 2000;28:930–933.

    Article  PubMed  CAS  Google Scholar 

  67. Johnson BD, Shaw LJ, Buchthal SD, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 2004;109:2993–2999.

    Article  PubMed  Google Scholar 

  68. Pohost GM, Forder JR. From the atomic nucleus to man: nuclear magnetic resonance spectroscopy, the next horizon in diagnostic cardiology. J Am Coll Cardiol 2003;42:1594–1595.

    Article  PubMed  Google Scholar 

  69. Goldman MR, Pohost GM. Nuclear magnetic resonance imaging. The potential for cardiac evaluation of the pediatric patient. Cardiol Clin 1983;1:521–525.

    PubMed  CAS  Google Scholar 

  70. Fletcher BD, Jacobstein MD, Nelson AD, Riemenschneider TA, Alfidi RJ. Gated magnetic resonance imaging of congenital cardiac malformations. Radiology 1984;150:137–140.

    PubMed  CAS  Google Scholar 

  71. Boxer RA, Singh S, LaCorte MA, Goldman M, Stein HL. Cardiac magnetic resonance imaging in children with congenital heart disease. J Pediatr 1986;109:460–464.

    Article  PubMed  CAS  Google Scholar 

  72. Nishimura T, Fujii T. Double-chambered right ventricle demonstrated by magnetic resonance imaging before cardiac catheterization — case report. Angiology 1988;39:259–262.

    PubMed  CAS  Google Scholar 

  73. Rees S, Somerville J, Warnes C, et al. Comparison of magnetic resonance imaging with echocardiography and radionuclide angiography in assessing cardiac function and anatomy following Mustard’s operation for transposition of the great arteries. Am J Cardiol 1988;61:1316–1322.

    Article  PubMed  CAS  Google Scholar 

  74. Theissen P, Kaemmerer H, Sechtem U, et al. Magnetic resonance imaging of cardiac function and morphology in patients with transposition of the great arteries following Mustard procedure. Thorac Cardiovasc Surg 1991;39(Suppl 3):221–224.

    PubMed  Google Scholar 

  75. Greenberg SB, Faerber EN, Balsara RK. Tetralogy of Fallot: diagnostic imaging after palliative and corrective surgery. J Thorac Imaging 1995;10:26–35.

    Article  PubMed  CAS  Google Scholar 

  76. Watanabe H, Hayashi JI, Sugawara M, Yagi N. Complete unilateral anomalous connection of the left pulmonary veins to the coronary sinus with unroofed coronary sinus syndrome: a case report. Thorac Cardiovasc Surg 1999;47:193–195.

    Article  PubMed  CAS  Google Scholar 

  77. Arheden H, Holmqvist C, Thilen U, et al. Left-to-right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology 1999;211:453–458.

    PubMed  CAS  Google Scholar 

  78. Hahm JK, Park YW, Lee JK, et al. Magnetic resonance imaging of unroofed coronary sinus: three cases. Pediatr Cardiol 2000;21:382–387.

    Article  PubMed  CAS  Google Scholar 

  79. Helbing WA, de Roos A. Clinical applications of cardiac magnetic resonance imaging after repair of tetralogy of Fallot. Pediatr Cardiol 2000;21:70–79.

    Article  PubMed  CAS  Google Scholar 

  80. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol 2001;37:1120–1128.

    Article  PubMed  CAS  Google Scholar 

  81. Geva T, Greil GF, Marshall AC, Landzberg M, Powell AJ. Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation 2002;106:473–478.

    Article  PubMed  Google Scholar 

  82. Tulevski II, van der Wall EE, Groenink M, et al. Usefulness of magnetic resonance imaging dobutamine stress in asymptomatic and minimally symptomatic patients with decreased cardiac reserve from congenital heart disease (complete and corrected transposition of the great arteries and subpulmonic obstruction). Am J Cardiol 2002;89:1077–1081.

    Article  PubMed  Google Scholar 

  83. Haramati LB, Glickstein JS, Issenberg HJ, Haramati N, Crooke GA. MR imaging and CT of vascular anomalies and connections in patients with congenital heart disease: significance in surgical planning. Radiographics 2002;22:337–347; discussion 348–349.

    PubMed  Google Scholar 

  84. Razavi RS, Hill DL, Muthurangu V, et al. Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 2003;13:461–465.

    PubMed  Google Scholar 

  85. Sorensen TS, Korperich H, Greil GF, et al. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 2004;110:163–169.

    Article  PubMed  Google Scholar 

  86. Durongpisitkul K, Tang NL, Soongswang J, Laohaprasitiporn D, Nanal A. Predictors of successful transcatheter closure of atrial septal defect by cardiac magnetic resonance imaging. Pediatr Cardiol 2004;25:124–130.

    Article  PubMed  CAS  Google Scholar 

  87. Taylor AM, Dymarkowski S, Hamaekers P, et al. MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 2005;234(2):542–547.

    PubMed  Google Scholar 

  88. Ghai A, Silversides C, Harris L, Webb GD, Siu SC, Therrien J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol 2002;40:1675–1680.

    Article  PubMed  Google Scholar 

  89. Hartnell GG. Imaging of aortic aneurysms and dissection: CT and MRI. J Thorac Imaging 2001;16:35–46.

    Article  PubMed  CAS  Google Scholar 

  90. Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation 2003;108:2236–2243.

    Article  PubMed  Google Scholar 

  91. Razavi R, Hill DL, Keevil SF, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003;362:1877–1882.

    Article  PubMed  Google Scholar 

  92. Ohyama H, Hosomi N, Takahashi T, et al. Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke 2003;34:2436–2439.

    Article  PubMed  Google Scholar 

  93. Barkhausen J, Hunold P, Eggebrecht H, et al. Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol 2002;179:1539–1544.

    PubMed  Google Scholar 

  94. Brechtel K, Reddy GP, Higgins CB. Cardiac fibroma in an infant: magnetic resonance imaging characteristics. J Cardiovasc Magn Reson 1999;1:159–161.

    PubMed  CAS  Google Scholar 

  95. Burri H, Bloch A, Hauser H. Characterization of an unusual right atrial mass by echocardiography, magnetic resonance imaging, computed tomography, and angiography. Echocardiography 1999;16:393–396.

    PubMed  Google Scholar 

  96. Kamiya H, Ohno M, Iwata H, et al. Cardiac lipoma in the interventricular septum: evaluation by computed tomography and magnetic resonance imaging. Am Heart J 1990;119:1215–1217.

    PubMed  CAS  Google Scholar 

  97. Salanitri JC, Pereles FS. Cardiac lipoma and lipomatous hypertrophy of the interatrial septum: cardiac magnetic resonance imaging findings. J Comput Assist Tomogr 2004;28:852–856.

    Article  PubMed  Google Scholar 

  98. Matsuoka H, Hamada M, Honda T, et al. Morphologic and histologic characterization of cardiac myxomas by magnetic resonance imaging. Angiology 1996;47:693–688.

    Article  PubMed  CAS  Google Scholar 

  99. Watanabe AT, Teitelbaum GP, Henderson RW, Bradley WG Jr. Magnetic resonance imaging of cardiac sarcomas. J Thorac Imaging 1989;4:90–92.

    PubMed  CAS  Google Scholar 

  100. Inoko M, Iga K, Kyo K, et al. Primary cardiac angiosarcoma detected by magnetic resonance imaging but not by computed tomography. Intern Med 2001;40:391–395.

    PubMed  CAS  Google Scholar 

  101. Tahara T, Takase B, Yamagishi T, et al. A case report on primary cardiac non-Hodgkin’s lymphoma: an approach by magnetic resonance and thallium-201 imaging. J Cardiovasc Magn Reson 1999;1:163–167.

    PubMed  CAS  Google Scholar 

  102. Schrem SS, Colvin SB, Weinreb JC, Glassman E, Kronzon I. Metastatic cardiac liposarcoma: diagnosis by transesophageal echocardiography and magnetic resonance imaging. J Am Soc Echocardiogr 1990;3:149–153.

    PubMed  CAS  Google Scholar 

  103. Mousseaux E, Meunier P, Azancott S, Dubayle P, Gaux JC. Cardiac metastatic melanoma investigated by magnetic resonance imaging. Magn Reson Imaging 1998;16:91–95.

    Article  PubMed  CAS  Google Scholar 

  104. Testempassi E, Takeuchi H, Fukuda Y, Harada J, Tada S. Cardiac metastasis of colon adenocarcinoma diagnosed by magnetic resonance imaging. Acta Cardiol 1994;49:191–196.

    PubMed  CAS  Google Scholar 

  105. Kaminaga T, Takeshita T, Kimura I. Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur Radiol 2003;13(Suppl 4):L1–10.

    Article  Google Scholar 

  106. Hoffmann U, Globits S, Schima W, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 2003;92:890–895.

    Article  PubMed  Google Scholar 

  107. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877–883.

    Article  PubMed  Google Scholar 

  108. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225–237.

    Article  PubMed  CAS  Google Scholar 

  109. Corrado D, Thiene G, Nava A, Rossi L, Pennelli N. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med 1990;89:588–596.

    Article  PubMed  CAS  Google Scholar 

  110. Tabib A, Loire R, Chalabreysse L, et al. Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia. Circulation 2003;108:3000–3005.

    Article  PubMed  CAS  Google Scholar 

  111. di Cesare E. MRI assessment of right ventricular dysplasia. Eur Radiol 2003;13:1387–1393.

    PubMed  Google Scholar 

  112. Bomma C, Rutberg J, Tandri H, et al. Misdiagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Cardiovasc Electrophysiol 2004;15:300–306.

    PubMed  Google Scholar 

  113. Bluemke DA, Krupinski EA, Ovitt T, et al. MR Imaging of arrhythmogenic right ventricular cardiomyopathy: morphologic findings and interobserver reliability. Cardiology 2003;99:153–162.

    Article  PubMed  Google Scholar 

  114. Wilde AA, Antzelevitch C, Borggrefe M, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 2002;106:2514–2519.

    Article  PubMed  Google Scholar 

  115. Papavassiliu T, Wolpert C, Fluchter S, et al. Magnetic resonance imaging findings in patients with Brugada syndrome. J Cardiovasc Electrophysiol 2004;15:1133–1138.

    Article  PubMed  Google Scholar 

  116. Nakagawa H, Aoyama H, Beckman KJ, et al. Relation between pulmonary vein firing and extent of left atrial-pulmonary vein connection in patients with atrial fibrillation. Circulation 2004;109:1523–1529.

    Article  PubMed  Google Scholar 

  117. Pappone C, Rosanio S, Oreto G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation 2000;102:2619–2628.

    PubMed  CAS  Google Scholar 

  118. Oral H, Knight BP, Ozaydin M, et al. Segmental ostial ablation to isolate the pulmonary veins during atrial fibrillation: feasibility and mechanistic insights. Circulation 2002;106:1256–1262.

    Article  PubMed  Google Scholar 

  119. Hauser TH, McClennen S, Katsimaglis G, Josephson ME, Manning WJ, Yeon SB. Assessment of left atrial volume by contrast enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 2004;6:491–497.

    Article  PubMed  Google Scholar 

  120. Lickfett L, Kato R, Tandri H, et al. Characterization of a new pulmonary vein variant using magnetic resonance angiography: incidence, imaging, and interventional implications of the “right top pulmonary vein”. J Cardiovasc Electrophysiol 2004;15:538–543.

    PubMed  Google Scholar 

  121. Kato R, Lickfett L, Meininger G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 2003;107:2004–2010.

    Article  PubMed  Google Scholar 

  122. Mansour M, Holmvang G, Sosnovik D, et al. Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:387–393.

    Article  PubMed  Google Scholar 

  123. Dickfeld T, Calkins H, Zviman M, et al. Anatomic stereotactic catheter ablation on three-dimensional magnetic resonance images in real time. Circulation 2003;108:2407–2413.

    Article  PubMed  Google Scholar 

  124. Dickfeld T, Calkins H, Zviman M, et al. Stereotactic magnetic resonance guidance for anatomically targeted ablations of the fossa ovalis and the left atrium. J Interv Card Electrophysiol 2004;11:105–115.

    Article  PubMed  Google Scholar 

  125. Reddy VY, Malchano ZJ, Holmvang G, et al. Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation. Feasibility in a porcine model of healed myocardial infarction. J Am Coll Cardiol 2004;44:2202–2213.

    Article  PubMed  Google Scholar 

  126. Lardo AC, McVeigh ER, Jumrussirikul P, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 2000;102:698–705.

    PubMed  CAS  Google Scholar 

  127. Robbins IM, Colvin EV, Doyle TP, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation. Circulation 1998;98:1769–1775.

    PubMed  CAS  Google Scholar 

  128. Taylor GW, Kay GN, Zheng X, Bishop S, Ideker RE. Pathological effects of extensive radiofrequency energy applications in the pulmonary veins in dogs. Circulation 2000;101:1736–1742.

    PubMed  CAS  Google Scholar 

  129. Yang M, Akbari H, Reddy GP, Higgins CB. Identification of pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation using MRI. J Comput Assist Tomogr 2001;25:34–35.

    Article  PubMed  CAS  Google Scholar 

  130. Dill T, Neumann T, Ekinci O, et al. Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation 2003;107:845–850.

    Article  PubMed  Google Scholar 

  131. Arentz T, Jander N, von Rosenthal J, et al. Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. Eur Heart J 2003;24:963–969.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shinbane, J.S., Colletti, P.M., Pohost, G.M. (2006). Cardiovascular Magnetic Resonance Imaging: Overview of Clinical Applications. In: Budoff, M.J., Shinbane, J.S., Achenbach, S., Raggi, P., Rumberger, J.A. (eds) Cardiac CT Imaging. Springer, London . https://doi.org/10.1007/1-84628-146-6_15

Download citation

  • DOI: https://doi.org/10.1007/1-84628-146-6_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-028-3

  • Online ISBN: 978-1-84628-146-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics