Skip to main content

Cell Transplantation for Diseases of Myelin

  • Chapter
Stem Cell and Gene-Based Therapy

Summary

Neural precursor cells that reside in the adult brain, a potential source of myelin-forming cells, do not produce effective remyelination in MS. The transplantation of exogenous cells, as an alternative source of remyelinating cells, has been pursued as a very active research area over the last decade and remarkable progress has been obtained. New sources of myelinating cells were characterized and different transplantation strategies have been proposed. Better understanding of the pros and cons of using each of the various remyelinating cell types, of the different routes of cell delivery, and of methods for cell tracking, form the basis for designing cell transplantation strategies in the clinic. Better understanding of the process of remyelination and insights into the mechanism of action of transplanted cells are still needed to optimize cell therapy in demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKay R. Stem cells in the central nervous system. Science 1997;276(5309):66–71.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Verdugo JM, Ferron S, Flames N, Collado L, Desfilis E, Font E. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 2002;57(6):765–775.

    Article  PubMed  Google Scholar 

  3. Gritti A, Parati EA, Cova L, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 1996;16(3):1091–1100.

    CAS  PubMed  Google Scholar 

  4. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255(5052):1707–1710.

    Article  CAS  PubMed  Google Scholar 

  5. Arsenijevic Y, Villemure JG, Brunet JF, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 2001;170(1):48–62.

    Article  CAS  PubMed  Google Scholar 

  6. Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003;9(4):439–447.

    Article  CAS  PubMed  Google Scholar 

  7. Rao M. Stem and precursor cells in the nervous system. J Neurotrauma 2004;21(4):415–427.

    Article  CAS  PubMed  Google Scholar 

  8. Schaffer DV, Gage FH. Neurogenesis and neuroadaptation. Neuromolecular Med 2004;5(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  9. Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 2004;76(2):223–231.

    Article  CAS  PubMed  Google Scholar 

  10. Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 2002;22(2):437–445.

    CAS  PubMed  Google Scholar 

  11. Bottai D, Fiocco R, Gelain F, et al. Neural stem cells in the adult nervous system. J Hematother Stem Cell Res 2003;12(6):655–670.

    Article  PubMed  Google Scholar 

  12. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996;10(24):3129–3140.

    Article  CAS  PubMed  Google Scholar 

  13. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science 1996;271(5251):978–981.

    Article  CAS  PubMed  Google Scholar 

  14. De Marchis S, Fasolo A, Puche AC. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 2004;476(3):290–300.

    Article  PubMed  Google Scholar 

  15. Pencea V, Bingaman KD, Freedman LJ, Luskin MB. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 2001;172(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 1998;36(2):234–248.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Buylla A, Herrera DG, Wichterle H. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 2000;127:1–11.

    Article  CAS  PubMed  Google Scholar 

  18. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4(11):1313–1317.

    Article  CAS  PubMed  Google Scholar 

  19. Roy NS, Wang S, Jiang L, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000;6(3):271–277.

    Article  CAS  PubMed  Google Scholar 

  20. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: agerelated decrease of neuronal progenitor proliferation. J Neurosci 1996;16(6):2027–2033.

    CAS  PubMed  Google Scholar 

  21. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  22. Namiki J, Tator CH. Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 1999;58(5):489–498.

    Article  CAS  PubMed  Google Scholar 

  23. Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J. Neural stem cells in the adult human brain. Exp Cell Res 1999;253(2):733–736.

    Article  CAS  PubMed  Google Scholar 

  24. Wolswijk G, Noble M. Identification of an adultspecific glial progenitor cell. Development 1989;105(2):387–400.

    CAS  PubMed  Google Scholar 

  25. Reynolds R, Hardy R. Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 1997;47(5):455–470.

    Article  CAS  PubMed  Google Scholar 

  26. Dawson MR, Polito A, Levine JM, Reynolds R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 2003;24(2):476–488.

    Article  CAS  PubMed  Google Scholar 

  27. Scolding NJ, Rayner PJ, Sussman J, Shaw C, Compston DA. A proliferative adult human oligodendrocyte progenitor. Neuroreport 1995;6(3):441–445.

    Article  CAS  PubMed  Google Scholar 

  28. Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998;121 (pt 12):2221–2228.

    Article  PubMed  Google Scholar 

  29. Roy NS, Wang S, Harrison-Restelli C, et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 1999;19(22):9986–9995.

    CAS  PubMed  Google Scholar 

  30. Horner PJ, Thallmair M, Gage FH. Defining the NG2-expressing cell of the adult CNS. J Neurocytol 2002;31(6–7):469–480.

    Article  CAS  PubMed  Google Scholar 

  31. Horner PJ, Power AE, Kempermann G, et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000;20(6):2218–2228.

    CAS  PubMed  Google Scholar 

  32. Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Invest 2001;81(3):263–281.

    Article  CAS  PubMed  Google Scholar 

  33. Compston A, Coles A. Multiple sclerosis. Lancet 2002;359(9313):1221–1231.

    Article  PubMed  Google Scholar 

  34. Dyment DA, Ebers GC. An array of sunshine in multiple sclerosis. N Engl J Med 2002;347(18):1445–1447.

    Article  PubMed  Google Scholar 

  35. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000;343(13):938–952.

    Article  CAS  PubMed  Google Scholar 

  36. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47(6):707–717.

    Article  CAS  PubMed  Google Scholar 

  37. Lassmann H. Classification of demyelinating diseases at the interface between etiology and pathogenesis. Curr Opin Neurol 2001;14(3):253–258.

    Article  CAS  PubMed  Google Scholar 

  38. Lassmann H, Raine CS, Antel J, Prineas JW. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 1998;86(2):213–217.

    Article  CAS  PubMed  Google Scholar 

  39. Trapp BD, Bo L, Mork S, Chang A. Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 1999;98(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  40. Lassmann H. Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clin Neurol Neurosurg 2002;104(3):168–171.

    Article  PubMed  Google Scholar 

  41. Lassmann H. Neuropathology in multiple sclerosis: new concepts. Mult Scler 1998;4(3):93–98.

    Article  CAS  PubMed  Google Scholar 

  42. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338(5):278–285.

    Article  CAS  PubMed  Google Scholar 

  43. Kornek B, Storch MK, Weissert R, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000;157(1):267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002;346(3):165–173.

    Article  PubMed  Google Scholar 

  45. Barkhof F, Bruck W, De Groot CJ, et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 2003;60(8):1073–1081.

    Article  PubMed  Google Scholar 

  46. Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 1993;33(2):137–151.

    Article  CAS  PubMed  Google Scholar 

  47. Raine CS, Wu E. Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol 1993;52(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  48. Compston A. Remyelination of the central nervous system. Mult Scler 1996;1(6):388–392.

    CAS  PubMed  Google Scholar 

  49. Compston A. Remyelination in multiple sclerosis: a challenge for therapy. The 1996 European Charcot Foundation Lecture. Mult Scler 1997;3(2):51–70.

    Article  CAS  PubMed  Google Scholar 

  50. Chari DM, Blakemore WF. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler 2002;8(4):271–277.

    Article  CAS  PubMed  Google Scholar 

  51. Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002;3(9):705–714.

    Article  CAS  PubMed  Google Scholar 

  52. De Stefano N, Matthews PM, Fu L, et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998;121 (pt 8):1469–1477.

    Article  PubMed  Google Scholar 

  53. Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 1999;12(3):295–302.

    Article  CAS  PubMed  Google Scholar 

  54. Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001;2(9):762–764.

    Article  CAS  PubMed  Google Scholar 

  55. Hemmer B, Cepok S, Nessler S, Sommer N. Pathogenesis of multiple sclerosis: an update on immunology. Curr Opin Neurol 2002;15(3):227–231.

    Article  PubMed  Google Scholar 

  56. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000;48(6):893–901.

    Article  CAS  PubMed  Google Scholar 

  57. Bjartmar C, Yin X, Trapp BD. Axonal pathology in myelin disorders. J Neurocytol 1999;28(4–5):383–395.

    Article  CAS  PubMed  Google Scholar 

  58. Wujek JR, Bjartmar C, Richer E, et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 2002;61(1):23–32.

    Article  PubMed  Google Scholar 

  59. Rudick RA, Cohen JA, Weinstock-Guttman B, Kinkel RP, Ransohoff RM. Management of multiple sclerosis. N Engl J Med 1997;337(22):1604–1611.

    Article  CAS  PubMed  Google Scholar 

  60. Tullman MJ, Lublin FD, Miller AE. Immunotherapy of multiple sclerosis: current practice and future directions. J Rehabil Res Dev 2002;39(2):273–285.

    PubMed  Google Scholar 

  61. Gordon MN, Kumar S, Espinosa de los Monteros A, et al. Developmental regulation of myelin-associated genes in the normal and the myelin deficient mutant rat. Adv Exp Med Biol 1990;265:11–22.

    Google Scholar 

  62. Griffiths IR, Duncan ID, McCulloch M. Shaking pups: a disorder of central myelination in the spaniel dog. II. Ultrastructural observations on the white matter of the cervical spinal cord. J Neurocytol 1981;10(5):847–858.

    Article  CAS  PubMed  Google Scholar 

  63. Readhead C, Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 1990;20(2):213–234.

    Article  CAS  PubMed  Google Scholar 

  64. Ludwin SK. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 1978;39(6):597–612.

    CAS  PubMed  Google Scholar 

  65. Blakemore WF. Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol Appl Neurobiol 1982;8(5):365–375.

    Article  CAS  PubMed  Google Scholar 

  66. Waxman SG, Kocsis JD, Nitta KC. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum. Light-microscopic observations. J Neurol Sci 1979;44(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  67. Carroll WM, Jennings AR, Mastaglia FL. Experimental demyelinating optic neuropathy induced by intra-neural injection of galactocerebroside antiserum. J Neurol Sci 1984;65(2):125–135.

    Article  CAS  PubMed  Google Scholar 

  68. Blakemore WF. Remyelination of the superior cerebellar peduncle in old mice following demyelination induced by cuprizone. J Neurol Sci 1974;22(1):121–126.

    Article  CAS  PubMed  Google Scholar 

  69. Tsunoda I, Fujinami RS. Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 1996;55(6):673–686.

    Article  CAS  PubMed  Google Scholar 

  70. Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004;17(1):174–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pirko I, Ciric B, Gamez J, et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 2004;18(13):1577–1579.

    CAS  PubMed  Google Scholar 

  72. Woyciechowska JL, Trapp BD, Patrick DH, et al. Acute and subacute demyelination induced by mouse hepatitis virus strain A59 in C3H mice. J Exp Pathol 1984;1(4):295–306.

    CAS  PubMed  Google Scholar 

  73. Sorensen O, Perry D, Dales S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch Neurol 1980;37(8):478–484.

    Article  CAS  PubMed  Google Scholar 

  74. Lassmann H. Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis. J Neurol 1983;229(4):207–220.

    Article  CAS  PubMed  Google Scholar 

  75. Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 2000;6(2):88–91.

    Article  CAS  PubMed  Google Scholar 

  76. Swanborg RH. Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease. Clin Immunol Immunopathol 1995;77(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  77. Izikson L, Klein RS, Luster AD, Weiner HL. Targeting monocyte recruitment in CNS autoimmune disease. Clin Immunol 2002;103(2):125–131.

    Article  CAS  PubMed  Google Scholar 

  78. Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 2002;20:101–123.

    Article  CAS  PubMed  Google Scholar 

  79. Karussis DM, Lehmann D, Slavin S, et al. Inhibition of acute, experimental autoimmune encephalomyelitis by the synthetic immunomodulator linomide. Ann Neurol 1993;34(5):654–660.

    Article  CAS  PubMed  Google Scholar 

  80. Mendel I, Kerlero de Rosbo N, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 1995;25(7):1951–1959.

    Google Scholar 

  81. Slavin A, Ewing C, Liu J, Ichikawa M, Slavin J, Bernard CC. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 1998;28(2):109–120.

    Article  CAS  PubMed  Google Scholar 

  82. Oliver AR, Lyon GM, Ruddle NH. Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol 2003;171(1):462–468.

    Article  CAS  PubMed  Google Scholar 

  83. Frost EE, Nielsen JA, Le TQ, Armstrong RC. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. J Neurobiol 2003;54(3):457–472.

    Article  CAS  PubMed  Google Scholar 

  84. Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 1998;37(3):413–428.

    Article  CAS  PubMed  Google Scholar 

  85. Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 1997;19(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  86. Targett MP, Sussman J, Scolding N, O’Leary MT, Compston DA, Blakemore WF. Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol Appl Neurobiol 1996;22(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  87. Keirstead HS, Blakemore WF. Identification of postmitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 1997;56(11):1191–1201.

    Article  CAS  PubMed  Google Scholar 

  88. Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 2000;123 (pt 1):105–115.

    Article  PubMed  Google Scholar 

  89. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 2002;125 (pt 2):338–349.

    Article  PubMed  Google Scholar 

  90. Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 1999;96(7):4089–4094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Keirstead HS, Levine JM, Blakemore WF. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 1998;22(2):161–170.

    Article  CAS  PubMed  Google Scholar 

  92. Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999;160(2):333–347.

    Article  CAS  PubMed  Google Scholar 

  93. Di Bello IC, Dawson MR, Levine JM, Reynolds R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J Neurocytol 1999;28(4–5): 365–381.

    Article  PubMed  Google Scholar 

  94. Reynolds R, Dawson M, Papadopoulos D, et al. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J Neurocytol 2002;31(6–7):523–536.

    Article  PubMed  Google Scholar 

  95. Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 1999;11(12): 4357–4366.

    Article  CAS  PubMed  Google Scholar 

  96. Picard-Riera ND, Delarasse L, Goude C, et al. Experi-mental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 2002;99(20):13211–13216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998;18(2):601–609.

    CAS  PubMed  Google Scholar 

  98. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 2000;20(17):6404–6412.

    CAS  PubMed  Google Scholar 

  99. Mason JL, Toews A, Hostettler JD, et al. Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 2004;164(5):1673–1682.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 1999;122 (pt 12):2279–2295.

    Article  PubMed  Google Scholar 

  101. Franklin RJ, Gilson JM, Blakemore WF. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 1997;50(2):337–344.

    Article  CAS  PubMed  Google Scholar 

  102. Franklin RJ, Blakemore WF. To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions? Mult Scler 1997;3(2):84–87.

    Article  CAS  PubMed  Google Scholar 

  103. Wolswijk G, Noble M. Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J Cell Biol 1992;118(4):889–900.

    Article  CAS  PubMed  Google Scholar 

  104. Sharief MK. Cytokines in multiple sclerosis: proinflammation or pro-remyelination? Mult Scler 1998;4(3):169–173.

    Article  CAS  PubMed  Google Scholar 

  105. Woodruff RH, Franklin RJ. Growth factors and remyelination in the CNS. Histol Histopathol 1997;12(2):459–466.

    CAS  PubMed  Google Scholar 

  106. Milner R, Anderson HJ, Rippon RF, et al. Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia 1997;19(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  107. Yao DL, Liu X, Hudson LD, Webster HD. Insulin-like growth factor-I given subcutaneously reduces clinical deficits, decreases lesion severity and upregulates synthesis of myelin proteins in experimental autoimmune encephalomyelitis. Life Sci 1996;58(16):1301–1306.

    Article  CAS  PubMed  Google Scholar 

  108. Li W, Quigley L, Yao DL, et al. Chronic relapsing experimental autoimmune encephalomyelitis: effects of insulin-like growth factor-I treatment on clinical deficits, lesion severity, glial responses, and blood brain barrier defects. J Neuropathol Exp Neurol 1998;57(5):426–438.

    Article  CAS  PubMed  Google Scholar 

  109. Cannella B, Hoban CJ, Gao YL, et al. The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci USA 1998;95(17):10100–10105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baker D, Hankey DJ. Gene therapy in autoimmune, demyelinating disease of the central nervous system. Gene Ther 2003;10(10):844–853.

    Article  CAS  PubMed  Google Scholar 

  111. Scherer SS, Chance PF. Myelin genes: getting the dosage right. Nat Genet 1995;11(3):226–228.

    Article  CAS  PubMed  Google Scholar 

  112. Winter CG, Saotome Y, Saotome I, Hirsh D. CNTF overproduction hastens onset of symptoms in motor neuron degeneration (mnd) mice. J Neurobiol 1996;31(3):370–378.

    Article  CAS  PubMed  Google Scholar 

  113. Rubio F, Kokaia Z, Arco A, et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Ther 1999;6(11):1851–1866.

    Article  CAS  PubMed  Google Scholar 

  114. Inoue K, Osaka H, Imaizumi K, et al. Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: molecular mechanism and phenotypic manifestations. Ann Neurol 1999;45(5):624–632.

    Article  CAS  PubMed  Google Scholar 

  115. Groves AK, Barnett SC, Franklin RJ, et al. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 1993;362(6419):453–455.

    Article  CAS  PubMed  Google Scholar 

  116. Kocsis JD. Restoration of function by glial cell transplantation into demyelinated spinal cord. J Neurotrauma 1999;16(8):695–703.

    Article  CAS  PubMed  Google Scholar 

  117. Blakemore WF, Crang AJ. Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system. Dev Neurosci 1988;10(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  118. Warrington AE, Barbarese E, Pfeiffer SE. Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res 1993;34(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  119. Franklin RJ, Blakemore WF. Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 1997;190 (pt 1):23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang SC, Duncan ID. Remyelination and restoration of axonal function by glial cell transplantation. Prog Brain Res 2000;127:515–533.

    Article  CAS  PubMed  Google Scholar 

  121. Blakemore WF, Franklin RJ. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant 2000;9(2):289–294.

    CAS  PubMed  Google Scholar 

  122. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 2002;22(15):6623–6630.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Halfpenny C, Benn T, Scolding N. Cell transplantation, myelin repair, and multiple sclerosis. Lancet Neurol 2002;1(1):31–40.

    Article  PubMed  Google Scholar 

  124. Franklin RJ. Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull 2002;57(6):827–832.

    Article  PubMed  Google Scholar 

  125. Pluchino S, Quattrini A, Brambilla E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003;422(6933):688–694.

    Article  CAS  PubMed  Google Scholar 

  126. Einstein O, Karussis D, Grigoriadis N, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic ncephalomyelitis. Mol Cell Neurosci 2003;24(4):1074–1082.

    Article  CAS  PubMed  Google Scholar 

  127. Windrem MS, Nunes MC, Rashbaum WK, et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 2004;10(1):93–97.

    Article  CAS  PubMed  Google Scholar 

  128. Kocsis JD, Akiyama Y, Radtke C. Neural precursors as a cell source to repair the demyelinated spinal cord. J Neurotrauma 2004;21(4):441–449.

    Article  PubMed  Google Scholar 

  129. Duncan ID, Aguayo AJ, Bunge RP, Wood PM. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 1981;49(2):241–252.

    Article  CAS  PubMed  Google Scholar 

  130. Lachapelle F, Gumpel M, Baulac M, Jacque C, Duc P, Baumann N. Transplantation of CNS fragments into the brain of shiverer mutant mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical studies. Dev Neurosci 1983;6(6):325–334.

    Article  PubMed  Google Scholar 

  131. Harrison BM. Remyelination by cells introduced into a stable demyelinating lesion in the central nervous system. J Neurol Sci 1980;46(1):63–81.

    Article  CAS  PubMed  Google Scholar 

  132. Blakemore WF, Crang AJ. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J Neurol Sci 1985;70(2):207–223.

    Article  CAS  PubMed  Google Scholar 

  133. Crang AJ, Gilson J, Blakemore WF. The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 1998;27(7):541–553.

    Article  CAS  PubMed  Google Scholar 

  134. Archer DR, Cuddon PA, Lipsitz D, Duncan ID. Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 1997;3(1):54–59.

    Article  CAS  PubMed  Google Scholar 

  135. Windrem MS, Roy NS, Wang J, et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 2002;69(6):966–975.

    Article  CAS  PubMed  Google Scholar 

  136. Blakemore WF, Gilson JM, Crang AJ. Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res 2000;61(3):288–294.

    Article  CAS  PubMed  Google Scholar 

  137. Utzschneider DA, Archer DR, Kocsis JD, Waxman SG, Duncan ID. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc Natl Acad Sci USA 1994;91(1):53–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Blakemore WF. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 1977;266(5597):68–69.

    Article  CAS  PubMed  Google Scholar 

  139. Blakemore WF, Crang AJ, Patterson RC. Schwann cell remyelination of CNS axons following injection of cultures of CNS cells into areas of persistent demyelination. Neurosci Lett 1987;77(1):20–24.

    Article  CAS  PubMed  Google Scholar 

  140. Baron-Van Evercooren A, Gansmuller A, Duhamel E, Pascal F, Gumpel M. Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. J Neuroimmunol 1992;40(2–3): 235–242.

    Article  CAS  PubMed  Google Scholar 

  141. Baron-Van Evercooren A, Avellana-Adalid V, Lachapelle F, Liblau R. Schwann cell transplantation and myelin repair of the CNS. Mult Scler 1997;3(2):157–161.

    Article  CAS  PubMed  Google Scholar 

  142. Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 2001;21(3):944–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Honmou O, Felts PA, Waxman SG, Kocsis JD. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 1996;16(10):3199–3208.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Avellana-Adalid V, Bachelin C, Lachapelle F, Escriou C, Ratzkin B, Baron-Van Evercooren A. In vitro and in vivo behaviour of NDF-expanded monkey Schwann cells. Eur J Neurosci 1998;10(1):291–300.

    Article  CAS  PubMed  Google Scholar 

  145. Imaizumi T, Lankford KL, Kocsis JD. Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res 2000;854(1–2):70–78.

    Article  CAS  PubMed  Google Scholar 

  146. Barnett SC, Hutchins AM, Noble M. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 1993;155(2):337–350.

    Article  CAS  PubMed  Google Scholar 

  147. Barnett SC. Olfactory ensheathing cells: unique glial cell types? J Neurotrauma 2004;21(4):375–382.

    Article  PubMed  Google Scholar 

  148. Barnett SC, Roskams AJ. Olfactory ensheathing cells. Isolation and culture from the rat olfactory bulb. Methods Mol Biol 2002;198:41–48.

    PubMed  Google Scholar 

  149. Barnett SC, Alexander CL, Iwashita Y, et al. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 2000;123 (pt 8):1581–1588.

    Article  PubMed  Google Scholar 

  150. Franklin RJ, Gilson JM, Franceschini IA, Barnett SC. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 1996;17(3):217–224.

    Article  CAS  PubMed  Google Scholar 

  151. Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 1998;18(16):6176–6185.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Imaizumi T, Lankford KL, Burton WV, Fodor WL, Kocsis JD. Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nat Biotechnol 2000;18(9):949–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith PM, Lakatos A, Barnett SC, Jeffery ND, Franklin RJ. Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol 2002;176(2):402–406.

    Article  CAS  PubMed  Google Scholar 

  154. Franklin RJ. Remyelination by transplanted olfactory ensheathing cells. Anat Rec 2003;271B(1):71–76.

    Article  Google Scholar 

  155. Keyvan-Fouladi N, Li Y, Raisman G. How do transplanted olfactory ensheathing cells restore function? Brain Res Brain Res Rev 2002;40(1–3):325–327.

    Article  CAS  PubMed  Google Scholar 

  156. Santos-Benito FF, Ramon-Cueto A. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system. Anat Rec 2003;271B(1):77–85.

    Article  Google Scholar 

  157. Kato T, Honmou O, Uede T, Hashi K, Kocsis JD. Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 2000;30(3):209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li Y, Carlstedt T, Berthold CH, Raisman G. Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Exp Neurol 2004;188(2):300–308.

    Article  PubMed  Google Scholar 

  159. Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 1997;277(5334):2000–2002.

    Article  CAS  PubMed  Google Scholar 

  160. Ramon-Cueto A, Plant GW, Avila J, Bunge MB. Longdistance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 1998;18(10):3803–3815.

    CAS  PubMed  Google Scholar 

  161. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000;25(2):425–435.

    Article  CAS  PubMed  Google Scholar 

  162. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 2003;180(2):167–171.

    Article  PubMed  Google Scholar 

  163. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brainderived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res 2001;88(1–2):203–213.

    Article  CAS  PubMed  Google Scholar 

  164. Franklin RJ. Obtaining olfactory ensheathing cells from extra-cranial sources a step closer to clinical transplant-mediated repair of the CNS? Brain 2002;125 (pt 1):2–3.

    Article  PubMed  Google Scholar 

  165. Weissman I, Spangrude G, Heimfeld S, Smith L, Uchida N. Stem cells. Nature 1991;353(6339):26.

    Article  CAS  PubMed  Google Scholar 

  166. Vescovi AL, Parati EA, Gritti A, et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 1999;156(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  167. Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: an overview. Circ Res 2003;92(6):598–608.

    Article  CAS  PubMed  Google Scholar 

  168. Vescovi AL, Gritti A, Galli R, Parati EA. Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 1999;16(8):689–693.

    Article  CAS  PubMed  Google Scholar 

  169. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002;99(5):3024–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999;5(12):1410–1412.

    Article  CAS  PubMed  Google Scholar 

  171. Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 2002;33(9):2270–2278.

    Article  PubMed  Google Scholar 

  172. Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 2001;32(4):1012–1019.

    Article  CAS  PubMed  Google Scholar 

  173. Yandava BD, Billinghurst LL, Snyder EY. “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 1999;96(12):7029–7034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu S, Suzuki Y, Kitada M, et al. New method for transplantation of neurosphere cells into injured spinal cord through cerebrospinal fluid in rat. Neurosci Lett 2002;318(2):81–84.

    Article  CAS  PubMed  Google Scholar 

  175. Wu S, Suzuki Y, Kitada M, et al. Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Lett 2001;312(3):173–176.

    Article  CAS  PubMed  Google Scholar 

  176. Hammang JP, Archer DR, Duncan ID. Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp Neurol 1997;147(1):84–95.

    Article  CAS  PubMed  Google Scholar 

  177. Milward EA, Lundberg CG, Ge B, Lipsitz D, Zhao M, Duncan ID. Isolation and transplantation of multipotential populations of epidermal growth factor-responsive, neural progenitor cells from the canine brain. J Neurosci Res 1997;50(5):862–871.

    Article  CAS  PubMed  Google Scholar 

  178. Ader M, Meng J, Schachner M, Bartsch U. Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. Glia 2000;30(3):301–310.

    Article  CAS  PubMed  Google Scholar 

  179. Ader M, Schachner M, Bartsch U. Transplantation of neural precursor cells into the dysmyelinated CNS of mutant mice deficient in the myelin-associated glycoprotein and Fyn tyrosine kinase. Eur J Neurosci 2001;14(3):561–566.

    Article  CAS  PubMed  Google Scholar 

  180. Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A. Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 1996;45(5):558–570.

    Article  CAS  PubMed  Google Scholar 

  181. Vitry S, Avellana-Adalid V, Hardy R, Lachapelle F, Baron-Van Evercooren A. Mouse oligospheres: from pre-progenitors to functional oligodendrocytes. J Neurosci Res 1999;58(6):735–751.

    Article  CAS  PubMed  Google Scholar 

  182. Vitry S, Avellana-Adalid V, Lachapelle F, Evercooren AB. Migration and multipotentiality of PSA-NCAM+neural precursors transplanted in the developing brain. Mol Cell Neurosci 2001;17(6):983–1000.

    Article  CAS  PubMed  Google Scholar 

  183. Learish RD, Brustle O, Zhang SC, Duncan ID. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in wide-spread formation of myelin. Ann Neurol 1999;46(5):716–722.

    Article  CAS  PubMed  Google Scholar 

  184. Zhang SC, Lipsitz D, Duncan ID. Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J Neurosci Res 1998;54(2):181–190.

    Article  CAS  PubMed  Google Scholar 

  185. Ben-Hur T, Rogister B, Murray K, Rougon G, Dubois-Dalcq M. Growth and fate of PSA-NCAM+ precursors of the postnatal brain. J Neurosci 1998;18(15):5777–5788.

    CAS  PubMed  Google Scholar 

  186. Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 1997;19(4):773–785.

    Article  CAS  PubMed  Google Scholar 

  187. Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci 2004;5(3):195–208.

    Article  CAS  PubMed  Google Scholar 

  188. Keirstead HS, Ben-Hur T, Rogister B, O’Leary MT, Dubois-Dalcq M, Blakemore WF. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci 1999;19(17):7529–7536.

    CAS  PubMed  Google Scholar 

  189. Ben-Hur T, Einstein O, Mizrachi-Kol R, et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 2003;41(1):73–80.

    Article  PubMed  Google Scholar 

  190. Bulte JW, Ben-Hur T, Miller BR, et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 2003;50(1):201–205.

    Article  PubMed  Google Scholar 

  191. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 2001;167(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  192. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001;17:435–462.

    Article  CAS  PubMed  Google Scholar 

  193. Evans M, Hunter S. Source and nature of embryonic stem cells. C R Biol 2002;325(10):1003–1007.

    Article  CAS  PubMed  Google Scholar 

  194. Nakatsuji N, Suemori H. Embryonic stem cell lines of nonhuman primates. Scientific World Journal 2002;2:1762–1773.

    Article  PubMed  Google Scholar 

  195. Smith AG, Heath JK, Donaldson DD, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988;336(6200):688–690.

    Article  CAS  PubMed  Google Scholar 

  196. Heath JK, Smith AG, Hsu LW, Rathjen PD. Growth and differentiation factors of pluripotential stem cells. J Cell Sci Suppl 1990;13:75–85.

    Article  CAS  PubMed  Google Scholar 

  197. Carpenter MK, Cui X, Hu ZY, et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 1999;158(2):265–278.

    Article  CAS  PubMed  Google Scholar 

  198. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995;168(2):342–357.

    Article  CAS  PubMed  Google Scholar 

  199. Finley MF, Kulkarni N, Huettner JE. Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J Neurosci 1996;16(3):1056–1065.

    CAS  PubMed  Google Scholar 

  200. Xian HQ, Gottlieb DI. Peering into early neurogenesis with embryonic stem cells. Trends Neurosci 2001;24(12):685–686.

    Article  CAS  PubMed  Google Scholar 

  201. Lang KJ, Rathjen J, Vassilieva S, Rathjen PD. Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system? J Neurosci Res 2004;76(2):184–192.

    Article  CAS  PubMed  Google Scholar 

  202. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999;285(5428):754–756.

    Article  CAS  PubMed  Google Scholar 

  203. Billon N, Jolicoeur C, Ying QL, Smith A, Raff M. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J Cell Sci 2002;115 (pt 18):3657–3665.

    Article  CAS  PubMed  Google Scholar 

  204. Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 2000;97(11):6126–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mitome M, Low HP, van den Pol A, et al. Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 2001;124 (pt 11):2147–2161.

    Article  CAS  PubMed  Google Scholar 

  206. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145–1147.

    Article  CAS  PubMed  Google Scholar 

  207. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  208. Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001;19(12):1134–1140.

    Article  CAS  PubMed  Google Scholar 

  209. Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001;19(12):1129–1133.

    Article  CAS  PubMed  Google Scholar 

  210. Deacon T, Dinsmore J, Costantini LC, Ratliff J, Isacson O. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 1998;149(1):28–41.

    Article  CAS  PubMed  Google Scholar 

  211. Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99(4):2344–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Vescovi A, Gritti A, Cossu G, Galli R. Neural stem cells: plasticity and their transdifferentiation potential. Cells Tissues Organs 2002;171(1):64–76.

    Article  PubMed  Google Scholar 

  213. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283(5401):534–537.

    Article  CAS  PubMed  Google Scholar 

  214. Horwitz EM. Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res 2003;34(6):600–606.

    Article  CAS  PubMed  Google Scholar 

  215. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116(5):639–648.

    Article  CAS  PubMed  Google Scholar 

  216. Kondo M, Wagers AJ, Manz MG, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003;21:759–806.

    Article  CAS  PubMed  Google Scholar 

  217. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290(5497):1779–1782.

    Article  CAS  PubMed  Google Scholar 

  218. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003;100(3):1364–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 2003;100(4):2088–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 2001;155(5):733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cogle CR, Yachnis AT, Laywell ED, et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 2004;363(9419):1432–1437.

    Article  CAS  PubMed  Google Scholar 

  222. Bonilla S, Alarcon P, Villaverde R, Aparicio P, Silva A, Martinez S. Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatal mouse brain. Eur J Neurosci 2002;15(3):575–582.

    Article  PubMed  Google Scholar 

  223. Tao H, Ma DD. Evidence for transdifferentiation of human bone marrow-derived stem cells: recent progress and controversies. Pathology 2003;35(1):6–13.

    Article  PubMed  Google Scholar 

  224. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003;425(6961):968–973.

    Article  CAS  PubMed  Google Scholar 

  225. Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002;39(3):229–236.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Inoue M, Honmou O, Oka S, Houkin K, Hashi K, Kocsis JD. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia 2003;44(2):111–118.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Brustle O, Choudhary K, Karram K, et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol 1998;16(11):1040–1044.

    Article  CAS  PubMed  Google Scholar 

  228. Flax JD, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 1998;16(11):1033–1039.

    Article  CAS  PubMed  Google Scholar 

  229. O’Leary MT, Blakemore WF. Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 1997; 48(2):159–167.

    Article  PubMed  Google Scholar 

  230. Tourbah A, Linnington C, Bachelin C, Avellana-Adalid V, Wekerle H, Baron-Van Evercooren A. Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 1997;50(5):853–861.

    Article  CAS  PubMed  Google Scholar 

  231. Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004;21(1):33–39.

    Article  PubMed  Google Scholar 

  232. Tran PB, Ren D, Veldhouse TJ, Miller RJ. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 2004;76(1):20–34.

    Article  CAS  PubMed  Google Scholar 

  233. Coulombel L, Auffray I, Gaugler MH, Rosemblatt M. Expression and function of integrins on hematopoietic progenitor cells. Acta Haematol 1997;97(1–2):13–21.

    Article  CAS  PubMed  Google Scholar 

  234. Prestoz L, Relvas JB, Hopkins K, et al. Association between integrin-dependent migration capacity of neural stem cells in vitro and anatomical repair following transplantation. Mol Cell Neurosci 2001;18(5):473–484.

    Article  CAS  PubMed  Google Scholar 

  235. Brocke S, Piercy C, Steinman L, Weissman IL, Veromaa T. Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc Natl Acad Sci USA 1999;96(12):6896–6901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Brustle O, Maskos U, McKay RD. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 1995;15(6):1275–1285.

    Article  CAS  PubMed  Google Scholar 

  237. Flax JD, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 1998;16(11):1033–1039.

    Article  CAS  PubMed  Google Scholar 

  238. Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003;228(2):480–487.

    Article  PubMed  Google Scholar 

  239. Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 2002;22(8):899–907.

    Article  PubMed  Google Scholar 

  240. Bulte JW, Zhang S, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96(26):15256–15261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bulte JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19(12):1141–1147.

    Article  CAS  PubMed  Google Scholar 

  242. Ben-Hur T, et al. In-vivo MRI tracking of magnetically labeled neural spheres transplanted in animal models of multiple sclerosis. Neurology 2004;62[suppl5(7)]:A112.

    Google Scholar 

  243. Ben-Hur, et al. Attenuation of chronic experimental autoimmune encephalomyelitis by intraventricular transplantation of neural spheres. Neurology 2004;62[suppl 5(7)]:A438.

    Google Scholar 

  244. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002;20(11):1103–1110.

    Article  CAS  PubMed  Google Scholar 

  245. Park KI, Ourednik J, Ourednik V, et al. Global gene and cell replacement strategies via stem cells. Gene Ther 2002;9(10):613–624.

    Article  CAS  PubMed  Google Scholar 

  246. Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181(2):115–129.

    Article  CAS  PubMed  Google Scholar 

  247. Linker RA, Maurer M, Gaupp S, et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 2002;8(6):620–624.

    Article  CAS  PubMed  Google Scholar 

  248. Butzkueven H, Zhang JG, Soilu-Hanninen M, et al. LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 2002;8(6):613–619.

    Article  CAS  PubMed  Google Scholar 

  249. Villoslada P, Hauser SL, Bartke I, et al. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 2000;191(10):1799–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Flugel A, Matsumuro K, Neumann H, et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 2001;31(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  251. Ruffini F, Furlan R, Poliani PL, et al. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther 2001;8(16):1207–1213.

    Article  CAS  PubMed  Google Scholar 

  252. Crang AJ, Blakemore WF. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes. Glia 1991;4(3):305–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ben-Hur, T., Einstein, O. (2006). Cell Transplantation for Diseases of Myelin. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_6

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics