An Improved Genetic Programming Technique for the Classification of Raman Spectra

  • Kenneth Hennessy
  • Michael G. Madden
  • Jennifer Conroy
  • Alan G. Ryder
Conference paper


The aim of this study is to evaluate the effectiveness of genetic programming relative to that of more commonly-used methods for the identification of components within mixtures of materials using Raman spectroscopy. A key contribution of the genetic programming technique proposed in this research is that it explicitly aims to optimise the certainty levels associated with discovered rules, so as to minimize the chance of misclassification of future samples.


Raman Spectrum Raman Spectroscopy Partial Little Square Principal Component Regression Anal Chim 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferraro J. R., Nakamoto K., Brown C. W., Introductory Raman Spectroscopy Second Ed., San Diego, Academic Press, 2003.Google Scholar
  2. 2.
    Shaver J.M Chemometrics for Raman Spectroscopy. Handbook of Raman Spectroscopy: Practical Spectroscopy Series Vol. 28, Marcel Dekker Inc, New York, 2001.Google Scholar
  3. 3.
    Bulkin B.J. The Raman effect: an introduction. Analytical Raman Spectroscopy, Chemical Analysis, volume 114. John Wiley and Sons, Inc, 1991; 1–19.Google Scholar
  4. 4.
    Goodacre R., Timmins E. M., Rooney P.J. et al. Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 1996; 140:233–239.CrossRefGoogle Scholar
  5. 5.
    Yang H., Griffiths P. R., Tate J.D. Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra. Anal Chim Acta 2003; 489:125–136.CrossRefGoogle Scholar
  6. 6.
    Schulze H.G., Greek L.S., Gorzalka B.B. et al. Artificial neural network and classical least squares method for neurotransmitter mixture analysis. J Neurosci Meth 1995; 56:155–167.CrossRefGoogle Scholar
  7. 7.
    Benjathapanun N., Boyle W.J.O. and Grattan K.T.V. Classification of UV-Vis spectroscopic data using principal component analysis and neural network techniques. Measurement 1998; 24:1–7.CrossRefGoogle Scholar
  8. 8.
    Goodacre R. Explanatory analysis of Spectroscopic data using machine learning of simple, interpretable rules. Vib Spectrosc 2003; 32:33–45.CrossRefGoogle Scholar
  9. 9.
    Ellis D.I., Broadhurst D., Kell D.B. et al. Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Infrared Spectroscopy and Machine Learning. Appl Environ Microb 2002; 68:2822–2828.CrossRefGoogle Scholar
  10. 10.
    Taylor J., Goodacre R., Wade W.G., Rowland J.J. and Kell D.B. The deconvolution of pyrolysis mass spectra using genetic programming: application to identification of some Eubacterium species. FEMS Microbiol Lett 1998; 160:237–246.CrossRefGoogle Scholar
  11. 11.
    Ryder A.G., O’Connor G.M. and Glynn T.J. Quantitative analysis of cocaine in solid mixtures using Raman spectroscopy and chemometric methods. J Raman Spectrosc 2000; 31:221–227.CrossRefGoogle Scholar
  12. 12.
    Estienne F., Massart D.L. Multivariate calibration with Raman data using fast Principal component regression and partial least squares methods. Anal Chim Acta 2001; 450:123–129.CrossRefGoogle Scholar
  13. 13.
    Madden M.G., Ryder A. G. Machine learning methods for quantitative analysis of Raman Spectroscopy data. Proceedings of SPIE, the International Society for Optical Engineering 2002; 4876:1130–1139.Google Scholar
  14. 14.
    Koza J.R., Bennett III F.H, Andre D. et al. Genetic Programming III. Morgan Kaufmann, 1999.Google Scholar
  15. 15.
    StatSoft, Inc. Electronic Statistics Textbook,, 2004.
  16. 16.
    Berthold M., Hand D. J. Intelligent Data Analysis, Springer, 2003.Google Scholar
  17. 17.
    Brierley P. Visual Neural Data Mining,, 2004.
  18. 18.
    Witten I.H., Eibe F. Data Mining: Practical machine learning tools with Java implementations, Morgan Kaufmann, San Francisco, 2000.Google Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Kenneth Hennessy
    • 1
  • Michael G. Madden
    • 1
  • Jennifer Conroy
    • 1
  • Alan G. Ryder
    • 1
  1. 1.National University of IrelandGalwayIreland

Personalised recommendations