Skip to main content

A combinatorial approach to conceptual graph projection checking

  • Conference paper
Research and Development in Intelligent Systems XXI (SGAI 2004)

Abstract

We exploit the combinatorial structure of conceptual graphs in order to obtain better execution times when computing projection, which is a core generalisation-specialisation relation over conceptual graphs. We show how the problem of finding this relation can be translated into the Maximum Clique problem. Consequently, approximation techniques developed for the Maximum Clique problem can be used to compute projection in conceptual graphs. We show that there are “simple queries” which can be answered quickly, thus providing efficient reasoning support in a knowledge management environment based on conceptual graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Baader, R. Molitor, and S. Tobies. Tractable and Decidable Fragments of Conceptual Graphs. In Proc. of the 7th Int’l Conf. on Conceptual Structures, pages 480–493. Springer-Verlag, 1999.

    Google Scholar 

  2. J.-F. Baget and M.-L. Mugnier. Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints. Jour. of Artificial Intelligence Research, 16:425–465, 2002.

    MATH  MathSciNet  Google Scholar 

  3. M. Bomze et al. The maximum clique problem. In Handbook of Combinatorial Optimization, volume Suppl. A, pages 1–74. Kluwer Academic Publishers, 1999.

    MathSciNet  Google Scholar 

  4. M. Chein, M.-L. Mugnier, and G. Simonet. Nested graphs: A graph-based knowledge representation model with FOL semantics. In Proc. of the 6th Int’l Conf. on the Principles of Knowledge Representation and Reasoning (KR’98), pages 524–535. Morgan Kaufmann, 1998.

    Google Scholar 

  5. P. Creasy and G. Ellis. A conceptual graph approach to conceptual schema integration. In Proc of the 1st Int’l Conf. on Conceptual Structures, (ICCS’93), 1993.

    Google Scholar 

  6. M. Croitoru and E. Compatangelo. On Conceptual Graph Projection. Technical Report AUCS/TR0403, Dept. of Computing Science, University of Aberdeen, UK, 2004. URL http://www.csd.abdn.ac.uk/research/recentpublications.php.

    Google Scholar 

  7. G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations. In Proc. of the 1st Int’l Conf. on Conceptual Structures, Lect. Notes in Artif. Intell., pages 274–293. Springer-Verlag, 1993.

    Google Scholar 

  8. G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decompositions: A Survey. In Proc. of the 26th Int’l Symp. on Mathematical Foundations of Computer Science, pages 37–57. Springer-Verlag, 2001.

    Google Scholar 

  9. G. Kerdiles and E. Salvat. A Sound and Complete CG Proof Procedure Combining Projections with Analytic Tableaux. In Proc. of the 5th Int’l Conf. on Conceptual Structures, pages 371–385. Springer-Verlag, 1997.

    Google Scholar 

  10. R. Levinson and G. Ellis. Multi-Level Hierarchical Retrieval. In Proc. of the 6th Annual W’shop on Conceptual Graphs, pages 67–81, 1991.

    Google Scholar 

  11. P. Mitra, G. Wiederhold, and M. L. Kersten. A Graph-Oriented Model for Articulation of Ontology Interdependencies. In Proc. of the VII Conf. on Extending Database Technology (EDBT’2000), Lect. Notes in Comp. Sci., pages 86–100. Springer-Verlag, 2000.

    Google Scholar 

  12. M.-L. Mugnier. On generalization /specialization for conceptual graphs. Jour. of Experimental and Theoretical Computer Science, 7:325–344, 1995.

    MATH  Google Scholar 

  13. S. H. Myaeng and A. Lopez-Lopez. Conceptual graph matching: A flexible algorithm and experiments. Jour. of Experimental and Theoretical Computer Science, 4:107–126, 1992.

    Google Scholar 

  14. N. F. Noy and M. A. Musen. Ontology Versioning as an Element of an Ontology-Management Framework. Technical Report SMI-2003-0961, School of Medical Informatics, Stanford University, USA, 2003. To appear in IEEE Intelligent Systems.

    Google Scholar 

  15. G. Simonet, M. Chein, and M.-L. Mugnier. Projection in conceptual graphs and query containment in nr-Datalog. Technical Report 98025, Laboratoire d’Informatique, Robotique et Microlectronique, Montpellier, France, 1998.

    Google Scholar 

  16. J. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this paper

Cite this paper

Croitoru, M., Compatangelo, E. (2005). A combinatorial approach to conceptual graph projection checking. In: Bramer, M., Coenen, F., Allen, T. (eds) Research and Development in Intelligent Systems XXI. SGAI 2004. Springer, London. https://doi.org/10.1007/1-84628-102-4_10

Download citation

  • DOI: https://doi.org/10.1007/1-84628-102-4_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-907-4

  • Online ISBN: 978-1-84628-102-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics