Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1447 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Box, G. Jenkins: (1970), Time Series Analysis, Forecasting and Control (Holden Day, San Francisco, CA)

    MATH  Google Scholar 

  2. J. Bezdek: (1976), “A physical interpretation of fuzzy isodata” IEEE Trans. Syst., Man, Cybern. pp. 387–389

    Google Scholar 

  3. E. Gustafson, W. Kessel: (1979), “Fuzzy clustering with fuzzy covariance matrix,” in Proc. IEEE Control Decision Conferencepp. 761–766

    Google Scholar 

  4. R. Yager, D. Filev: (1994), Essentials of fuzzy modeling and control (John Wiley & Sons, Hoboken, NJ, U.S.A)

    Google Scholar 

  5. L. Zadeh: (1973), “Outline of a new approach to the analysis of complex systems and decision processes” IEEE Trans. Syst., Man, Cybern. Part B 3(1), 28–44

    MATH  MathSciNet  Google Scholar 

  6. D. Driankov, H. Hellendoorn, M. Reinfrank: (1993), An Introduction to Fuzzy Control (Springer-Verlag)

    Google Scholar 

  7. T. Takagi, M. Sugeno: (1985), “Fuzzy identification of systems and its application to modeling and control” IEEE Trans. Syst., Man, Cybern. 15, 116–132

    MATH  Google Scholar 

  8. L.X. Wang: (1995), “Analysis and design of fuzzy identifiers of nonlinear dynamic systems” IEEE Trans. on Automatic Control 40, 11–23

    MATH  Google Scholar 

  9. J.S.R. Jang, C.T. Sun: (1995), “Neuro-fuzzy modeling and control” Proceedings of the IEEE 83(3), 378–406

    Article  Google Scholar 

  10. R. Jager: (1995), “Fuzzy logic in control,” Ph.D. thesis, T. U. Delft, The Netherlands

    Google Scholar 

  11. M. Sugeno, T. Yasukawa: (1993), “A fuzzy logic based approach to qualitative modeling” IEEE Trans. on Fuzzy Systems 1, 7–31

    Google Scholar 

  12. N. Lori, P. Costa Branco: (1995), “Autonomous mountain-clustering method applied to fuzzy systems modeling,” in Intelligent Engineering Systems Through Artificial Neural Networks, Smart Engineering Systems: Fuzzy Logic and Evolutionary Programming, ed. by C. Dagli, M. Akay, C. Philip, C. Chen, B. Fernández, J. Ghosh, Vol. 5 (ASME Press, New York, U.S.A.), pp. 311–316

    Google Scholar 

  13. J.S. Jang: (1994), “Structure determination in fuzzy modeling: A fuzzy cart approach,” in Proc. of IEEE International Conference on Fuzzy Systems

    Google Scholar 

  14. S. Tan, J. Vandewalle: (1995), “An on-line structural and parametric scheme for fuzzy modelling,” in Proc. of the 6th International Fuzzy Systems Association World Congress, IFSA-95pp. 189–192

    Google Scholar 

  15. W. Pedrycz, J. Valente de Oliveira: (1996), “Optimization of fuzzy models” IEEE Trans. Syst., Man, Cybern. Part B 26, 627–636

    Google Scholar 

  16. W. Pedrycz: (1994), “Why triangular membership functions?” Fuzzy Sets and Systems 64, 21–30

    Article  MathSciNet  Google Scholar 

  17. L.X. Wang: (1997), A Course in Fuzzy Systems and Control (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  18. L.X. Wang: (1994), Adaptive Fuzzy Systems and Control (Prentice Hall, Englewood Cliffs, NJ)

    Google Scholar 

  19. J.S. Jang: (1992), “Neuro-fuzzy modeling: Architectures, analyses and applications,” Ph.D. thesis, University of Berkeley-California

    Google Scholar 

  20. U. Bodenhofer: (1996), “Tuning of fuzzy systems using genetic algorithms,” Master’s thesis, Institut für Mathematik Johannes Kepler Universität, Linz, Austria

    Google Scholar 

  21. C. Peña: (2002), “Coevolutionary fuzzy modeling,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne

    Google Scholar 

  22. A. Grace: (1992), Optimization Toolbox-For use with MATLAB, Mathworks, Inc.

    Google Scholar 

  23. D.E. Goldberg: (1989), Genetic Algorithms in Search, Optimization and Machine Learning (Addison Wesley, USA)

    MATH  Google Scholar 

  24. Z. Michalewicz: (1996), Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, Berlin)

    MATH  Google Scholar 

  25. J. Espinosa, J. Vandewalle: (2003), “Extracting linguistic fuzzy models from numerical data-afreli algorithm,” in Interpretability issues in fuzzy modeling, ed. by J. Casillas, O. Cordon, F. Herrera, L. Magdalena (Springer-Verlag, London)

    Google Scholar 

  26. D. Broadbent: (1975), “The magic number seven after fifteen years,” Studies in Long Term Memory (Addison-Wesley)

    Google Scholar 

  27. J. Espinosa, J. Vandewalle: (2000), “Constructing fuzzy models with linguistic integrity-afreli algorithm” IEEE Trans. on Fuzzy Systems 8(5), 591–600

    Article  Google Scholar 

  28. J. Espinosa, J. Vandewalle: (1998), “Fuzzy modeling and identification, using afreli and fuzion algorithms,” in Proceedings of the 5th. International Conference on Soft Computing IIZUKA-98Iizuka, Japan, pp. 535–540

    Google Scholar 

  29. J.S. Jang: (1998), Fuzzy Logic Toolbox, User’s Guide, V-2.0 (Mathworks, USA)

    Google Scholar 

  30. K. Nozaki, H. Ishibuchi, H. Tanaka: (1997), “A simple but powerful heuristic method for generating fuzzy rules from numerical data” Fuzzy Sets and Systems (86), 251–270

    Google Scholar 

  31. J. Espinosa, J. Vandewalle: (1998), “Fuzzy modeling with linguistic integrity,” in Proceedings of the International Workshop on Advanced Black Box Techniques for Nonlinear ModelingLeuven, Belgium, pp. 197–202

    Google Scholar 

  32. L. Ljung: (1987), System Identification Theory for the User (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  33. Y. Chikkula, J. Lee: (1997), “Input sequence design for parametric identification of nonlinear systems,” in Proceedings of the American Control ConferenceAlbuquerque, USA, pp. 3037–3041

    Google Scholar 

  34. H. Akaike: (1974), “A new look at the statistical model identification” IEEE Trans. on Automatic Control 19, 716–723

    MATH  MathSciNet  Google Scholar 

  35. X. He, H. Asada: (1993), “A new method for identifying orders of input—output models for nonlinear dynamic systems,” in Proceedings of the American Control ConferenceSan Francisco, CA, pp. 2520–2523

    Google Scholar 

  36. J. SJöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, J. Hjalmarsson, A. Juditsky: (1995), “Nonlinear black-box modeling in system identification: A unified overview” Automatica 31, 1691–1724

    MATH  Google Scholar 

  37. S. Chen, S. Billings: (1992), “Neural networks for nonlinear dynamic system modelling and identification” Intl. J. Control 56, 319–346

    MathSciNet  MATH  Google Scholar 

  38. G. Goodwin, K. Sin: (1984), Adaptive Filtering Prediction and Control (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  39. S. Billings, W. Voon: (1986), “Correlation based model validity tests for nonlinear models” Intl. J. Control 44, 235–244

    MATH  Google Scholar 

  40. T. Kailath: (1980), Linear Systems (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  41. J.J. Østergaard: (1999), “High level process control in the cement industry by fuzzy logic,” Fuzzy Logic in Control-Advances and Applications (World Scientific, Singapore)

    Google Scholar 

  42. M. Setnes: (1999), “Implementing fuzzy control in the manufacturing of washing powders,” Fuzzy Logic in Control-Advances and Applications (World Scientific, Singapore)

    Google Scholar 

  43. C. von Altrock: (1995), “Fuzzy logic applications in europe,” Industrial Applications of Fuzzy Logic and Intelligent System (IEEE-Press)

    Google Scholar 

  44. K. Astrom, T. Hagglund: (1995), PID Controllers: Theory, Design and Tuning (ISA)

    Google Scholar 

  45. J. Jantzen: (1991), Fuzzy Control (Technical University of Denmark)

    Google Scholar 

  46. J.S. Jang, C.T. Sun, E. Mizutani: (1997), Neuro Fuzzy and Soft Computing (Prentice Hall International, Englewood Cliffs, NJ)

    Google Scholar 

  47. J. Abonyi, H. Andersen, L. Nagy, F. Szeifert: “Inverse fuzzy-process-model based direct adaptive control” URL citeseer.nj.nec.com/abonyi99inverse.html

    Google Scholar 

  48. J. Suykens: (1995), “Artificial neural networks for modeling and control of nonlinear systems,” Ph.D. thesis, Faculty of Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

    Google Scholar 

  49. A. Isidori: (1989), Nonlinear Control Systems—An Introduction, 2nd edn. (Springer-Verlag)

    Google Scholar 

  50. R. Marino, P. Tomei: (1995), Nonlinear Control Design (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  51. V. Utkin: (1977), “Variable structure systems: A survey” IEEE Transactions on Automatic Control 22(2), 212–222

    Article  MATH  MathSciNet  Google Scholar 

  52. R. Palm, D. Driankov, H. Hellendoorn: (1997), Model Based Fuzzy Control (Springer-Verlag)

    Google Scholar 

  53. H. Ying: (1998), “The takagi—sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controller” Automatica 34(2)

    Google Scholar 

  54. K. Tanaka, M. Sugeno: (1992), “Stability analysis and design of fuzzy control systems” Fuzzy Sets and Systems 45(2), 135–156

    Article  MathSciNet  MATH  Google Scholar 

  55. Mathworks, Inc.: (1997), LMI Control Toolbox Version 1.0.4

    Google Scholar 

  56. Ecole Nationale Supérieure de Techniques Avancées (ENSTA),Optimization and Control Group: (1998), LMITOOL-2.0 package

    Google Scholar 

  57. J. Zhao: (1995), “System modeling, identification and control using fuzzy logic,” Ph.D. thesis, Université Catolique de Louvain, Belgium

    Google Scholar 

  58. O. Agudelo: (2003), “Control of a helicopter laboratory process using linear and fuzzy techniques,” Master’s thesis, Corporacion Universitaria de Ibague

    Google Scholar 

  59. M. Johansson, A. Rantzer: (1997), “Computation of piecewise quadratic lyapunov functions for hybrid system,” in Proceedings of the European Control ConferenceBrussels, Belgium

    Google Scholar 

  60. E. Camacho, C. Bordons: (1995), Model Predictive Control in the Process Industry (Springer-Verlag, London)

    Google Scholar 

  61. D. Clarke, C. Mohtadi, P. Tuffs: (1987), “Generalized predictive control-parts i-ii” Automatica 23, 137–160

    MATH  Google Scholar 

  62. J. Richalet: (1993), “Industrial applications of model based predictive control” Automatica 29, 1251–1274

    Article  MathSciNet  Google Scholar 

  63. C. Garcia, D. Prett, M. Morari: (1989), “Model predictive control: Theory and practice-a survey” Automatica 25, 335

    MATH  Google Scholar 

  64. R. Soeterboek: (1990), “Predictive control, a unified approach,” Ph.D. thesis, Technische Universiteit Delft, The Netherlands

    Google Scholar 

  65. S. Loureiro de Oliveira: (1996), “Model predictive control for constrained nonlinear systems,” Ph.D. thesis, California Institute of Technology, USA

    Google Scholar 

  66. L. Magni: (1998), “Nonlinear receding horizon control:theory and application,” Ph.D. thesis, Università degli Studi di Pavia, Italy

    Google Scholar 

  67. F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings, S. Wright: (1999), “Nonlinear predictive control and moving horizon estimation—an introductory overview,” Advances in Control—Highlights of ECC’99 (Springer-Verlag)

    Google Scholar 

  68. J. Rawlings: (1999), “Tutorial: Model predictive control technology,” in Proceedings of the ACCSan Diego, CA

    Google Scholar 

  69. S. Yasunobu, S. Miyamoto: (1984), “A predictive fuzzy control for automatic train operation” in Japanese Systems and Control 28(10), 605–613

    Google Scholar 

  70. J.A. Roubos, R. Babuška, P. Bruijn, H. Verbruggen: (1998), “Predictive control by local linearization of a takagi—sugeno fuzzy model” Proceedings of FUZZ-IEEE-98 pp. 37–42

    Google Scholar 

  71. R. Babuška: (1997), “Fuzzy modeling and identification,” Ph.D. thesis, Delft University of Technology, The Netherlands

    MATH  Google Scholar 

  72. J.M. Da Costa Sousa: (1998), “A fuzzy approach to model-based control,” Ph.D. thesis, Delft University of Technology, The Netherlands

    Google Scholar 

  73. J. Espinosa, M. Hadjili, V. Wertz, J. Vandewalle: (1999), “Predictive control using fuzzy models-comparative study” Proceedings of the European Control Conference-99

    Google Scholar 

  74. J. Espinosa, J. Vandewalle: (1998), “Predictive control using fuzzy models applied to a steam generating unit,” in Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry, ed. by D. Ruan, H.A. Abderrahim, P. D’hondt, E. Kerre (World Scientific, Singapore)

    Google Scholar 

  75. J. Espinosa, J. Vandewalle: (1999), “Constrained predictive control using fuzzy models,” in Proc. of the Eight International Fuzzy Systems Association World Congress (IFSA-99)Taiwan, pp. 649–654

    Google Scholar 

  76. J. Espinosa, J. Vandewalle: (1999), “Predictive control using fuzzy models,” in Advances in Soft Computing Engineering Design and Manufacturing, ed. by R. Roy, T. Furuhashi, P. Chawdhry (Springer-Verlag, London)

    Google Scholar 

  77. M. Henson, D. Seborg: (1990), “Input-output linearization of general nonlinear processes” AIChE Journal 36(11), 1753–1757

    Article  Google Scholar 

  78. G. Lightbody, G. Irwin: (1997), “Nonlinear control structures based on embedded neural system models” IEEE Trans. on Neural Networks 8, 553–567

    Article  Google Scholar 

  79. B. De Moor: (1998), “Daisy: Database for the identification of systems” Department of Electrical Engineering-ESAT-K.U. Leuven, Belgium. http://www.esat.kuleuven.ac.be/sista/daisy/, Used data set: Continuous Stirred Tank Reactor, Section: Process Industry Systems, code: 98-002

    Google Scholar 

  80. E. Lawler, E. Wood: (1966), “Branch-and-bound methods: A survery” Journal of Operations Research 14, 699–719

    MathSciNet  MATH  Google Scholar 

  81. L. Mitten: (1970), “Branch-and-bound methods: General formulation and properties” Journal of Operations Research 18, 24–34

    MATH  MathSciNet  Google Scholar 

  82. G. Pellegrinetti, J. Bentsman: (1996), “Nonlinear control oriented boiler modeling-a benchmark problem for controller design” IEEE Trans. on Control Sys. Tech. 4(1), 57–64

    Google Scholar 

  83. B. De Moor: (1998), “Daisy: Database for the identification of systems” Department of Electrical Engineering-ESAT-K.U. Leuven, Belgium. http://www.esat.kuleuven.ac.be/sista/daisy/, Used data set: Model of a steam generator at Abbott Power Plant in Champaign IL., Section: Process Industry Systems, code: 98-003

    Google Scholar 

  84. A. Gutierrez: (2000), “Fuzzy model-based predictive control for an hpde polymerization reactor,” Master’s thesis, Katholieke Universiteit Leuven

    Google Scholar 

  85. K. Choi, W. Ray: (1992), “The dynamic behavior of fluidized bed reactors for solid catalyzed gas phase olefin polymerization” Chemical Engineering 40, 2261–2279

    Google Scholar 

  86. K. MacAuley: (1991), “Modeling, estimation and control of product properties in a gas phase polyethylene reactor,” Ph.D. thesis, Mc Master University

    Google Scholar 

  87. W. Van Brempt, T. Backx, P. Van Overschee, B. De Moor, R. Tousain: (2001), “A high performance model predictive controller: application on a polyethylene gas phase reactor” Control Engineering Practice 9, 829–835

    Google Scholar 

  88. M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret: (1998), “Applications of second-order cone programming” Linear Algebra and Applications 284, 193–228

    MathSciNet  MATH  Google Scholar 

  89. A. Ben-Tal, A. Nemirovski: (1996), “Robust convex programming,” Tech. rep., Minerva Optimization Center, Haifa, Israel

    Google Scholar 

  90. A. Ben-Tal, A. Nemirovski: (1997), “Robust solutions of uncertain linear programs via convex programming,” Tech. rep., Minerva Optimization Center, Haifa, Israel

    Google Scholar 

  91. L. El Ghaoui, F. Outstry, H. Lebret: (1999), “Robust solutions to uncertain semidefinite programs” SIAM J. of Optim. 9(1), 33–52

    Google Scholar 

  92. S. Boyd, L. Vandenberghe, M. Grant: (1994), “Efficient convex optimization for engineering design,” in IFAC Symposium on Robust Control DesignRio de Janeiro, Brazil

    Google Scholar 

  93. S. Wright: (1997), “Applying new optimization algorithms to model predictive control” Chemical Process Control-V, CACHE, AIChe, Symposium Series 93(316), 147–155

    Google Scholar 

  94. W. Minten, P. Vanvuchelen: (1991), “Modeling and simulation of an electronically controlled variable transmission,” Master’s thesis, K. U. LEUVEN, Belgium

    Google Scholar 

  95. P. Vanvuchelen, B. De Moor: (1993), “A multi-objective optimization approach for parameter setting in system and control design,” in Extended Abstracts of the IFIP Conference on System Modelling and OptimizationCompiegne, France

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2005). Conclusions and Future Perspectives. In: Fuzzy Logic, Identification and Predictive Control. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/1-84628-087-7_8

Download citation

  • DOI: https://doi.org/10.1007/1-84628-087-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-828-2

  • Online ISBN: 978-1-84628-087-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics