Summary
Recent progress in biology, medical science, bioinformatics, and biotechnology has led to the accumulation of tremendous amounts of biodata that demands in-depth analysis. On the other hand, recent progress in data mining research has led to the development of numerous efficient and scalable methods for mining interesting patterns in large databases. The question becomes how to bridge the two fields, data mining and bioinformatics, for successful mining of biological data. In this chapter, we present an overview of the data mining methods that help biodata analysis. Moreover, we outline some research problems that may motivate the further development of data mining tools for the analysis of various kinds of biological data.
Keywords
- Support Vector Machine
- Data Mining
- Basic Local Alignment Search Tool
- Edit Distance
- Boolean Network
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag London Limited
About this chapter
Cite this chapter
Bajcsy, P., Han, J., Liu, L., Yang, J. (2005). Survey of Biodata Analysis from a Data Mining Perspective. In: Wu, X., Jain, L., Wang, J.T., Zaki, M.J., Toivonen, H.T., Shasha, D. (eds) Data Mining in Bioinformatics. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-059-1_2
Download citation
DOI: https://doi.org/10.1007/1-84628-059-1_2
Publisher Name: Springer, London
Print ISBN: 978-1-85233-671-4
Online ISBN: 978-1-84628-059-7
eBook Packages: Computer ScienceComputer Science (R0)
