Skip to main content

A simple discrete stochastic model for laser-induced jet-chemical etching

  • Conference paper
Fractals in Engineering

Summary

Recently developed processes based on laser-induced liquid jet-chemical etching provide efficient methods for high resolution microstructuring of metals. Like in other abrasive techniques (water-jet cutting, laser cutting, ion sputtering etc.) a spontaneous formation of ripples in the surface morphology has been observed depending upon the choice of system parameters. In this paper we present a discrete stochastic model describing the joint action of removal of material by chemical etching and thermally activated diffusion initiated by a moving laser leading to structure formation of a surface. Depending on scan speed and laser power different surface morphologies are observed ranging from rough surface structures to the formation of ripples. The continuum equation associated to the discrete model is shown to be a modified Kuramoto-Sivashinsky equation in a frame comoving with the laser beam. Fourier and wavelet techniques as well as large deviation spectra are used for a characterization of the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Metev, A. Stephen, J. Schwarz, C. Wochnowski, Laser-induced chemical micro-treatment and synthesis of materials, RIKEN Review 50, 47–52 (2003).

    Google Scholar 

  2. T.J. Rabbow, A. Mora, M. Haase, P.J. Plath, Selforganised structure formation in organised microstructuring by laser-jet etching, to be published in Int. J. Bif. Chaos.

    Google Scholar 

  3. R. Friedrich, G. Radons, T. Ditzinger, A. Henning, Ripple formation through an interface instability from moving growth and erosion sources, Phys. Rev. Lett. 85, 4884–4887 (2000).

    Article  Google Scholar 

  4. R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology, Phys. Rev. Lett. 75, 4464–4467 (1995).

    Article  Google Scholar 

  5. A.-L. Barabási, H.E. Stanley: Fractal Concepts an Surface Growth, Cambridge Univ. Press (1995).

    Google Scholar 

  6. P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Phys. Rev. 184, 383–416 (1969).

    Article  Google Scholar 

  7. L. Bergmann, C. Clemens, Lehrbuch der Experimentalphysik, Bd.3 Optik, Gruyter (2004).

    Google Scholar 

  8. Y. Lawrence Yao, Laser Machining processes, Section 2.9: Reflection and Absorption of Laser Beams. http://www.columbia.edu/cu/mechanical/mrl/ntm/level2/ch02/html/l2c02s09.html

    Google Scholar 

  9. A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis, M.A. Zaks, Convective Cahn-Hillard models: from coarsening to roughening, Phys. Rev. Lett. 86, 1550 (2001).

    Article  Google Scholar 

  10. D. D. Vvedensky, A. Zangwill, C. N. Luse, M. R. Wilby, Stochastic equations of motion for epitaxial growth, Phys. Rev. E 48, 852–862 (1993).

    Article  Google Scholar 

  11. K.B. Lauritsen, R. Cuerno, H.A. Makse, Noisy Kuramoto-Sivashinsky equation for an erosion model, Phys. Rev. E 54, 3577–3580 (1996).

    Article  Google Scholar 

  12. M. Předota, M. Kotrla, Stochastic equations for simple discrete models of epitaxial growth, Phys. Rev. E 54, 3933–3942 (1996).

    Article  Google Scholar 

  13. D. D. Vvedensky, Edward-Wilkinson equation from lattice transition rules, Phys. Rev. E 67, 025102 (2003).

    Article  Google Scholar 

  14. H. Risken, The Fokker-Planck equation, Springer, Berlin (1996).

    Google Scholar 

  15. S. Mallat, A wavelet tour of signal processing, Academic Press, San Diego (1998).

    Google Scholar 

  16. S. Jaffard, Some open problems about multifractal functions, in: Fractals in Engineering (J. Lévy Véhel E. Lutton, C. Tricot eds.), Springer, London (1997).

    Google Scholar 

  17. J.F. Muzy, E. Bacry and A. Arnéodo, The multifractal formalism revisited with wavelets, Int. J. Bif. Chaos 4, 245–302 (1994).

    Article  Google Scholar 

  18. C. Canus, J. Lévy Véhel, C. Tricot, Continuous large deviation multifractal spectrum: definition and estimation, in: Fractals and Beyond (M. M. Novak ed.), World Scientific, Singapore, 117–128 (1998). FracLab software: URL: http//www-rocq.inria.fr/fractales.

    Google Scholar 

  19. M. Haase, B. Lehle, Tracing the skeleton of wavelet transform maxima lines for the characterization of fractal distributions, in: Fractals and Beyond (M. M. Novak ed.), World Scientific, Singapore, 241–250 (1998).

    Google Scholar 

  20. M. Haase, A. Mora, B. Lehle, Multifractal and stochastic analysis of electropolished surfaces, in: Thinking in Patterns (M. M. Novak ed.), World Scientific, Singapore, 69–78 (2004).

    Google Scholar 

  21. A. Mora, M. Haase, T. Rabbow, P.J. Plath, A discrete model for laser driven etching and microstructuring of metallic surfaces, http://arxiv.org/abs/condmat/0503093 and submitted to Phys. Rev. E.

    Google Scholar 

  22. A. Chhabra, R.V. Jensen, Direct determination of the f(α) singularity spectrum, Phys. Rev. Lett. 62 1327–1330 (1989).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this paper

Cite this paper

Mora, A., Rabbow, T., Lehle, B., Plath, P.J., Haase, M. (2005). A simple discrete stochastic model for laser-induced jet-chemical etching. In: Lévy-Véhel, J., Lutton, E. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/1-84628-048-6_9

Download citation

  • DOI: https://doi.org/10.1007/1-84628-048-6_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-047-4

  • Online ISBN: 978-1-84628-048-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics