Postmortem Analysis for Inherited Ion Channelopathies

  • Kathryn A. Glatter
  • Nipavan Chiamvimonvat
  • Yuxia He
  • Philippe Chevalier
  • Emanuela Turillazzi


Sudden Death Sudden Cardiac Death Right Ventricle Hypertrophic Cardiomyopathy Brugada Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Escobedo LG, Zack MM. Comparisons of sudden and nonsudden coronary deaths in the United States. Circulation 1996;93:2033–2036.PubMedGoogle Scholar
  2. 2.
    Goraya TY, Jacobsen SJ, Kottke TE, et al. Coronary heart disease death and sudden cardiac death. Am J Epidemiol 2003;157:763–770.CrossRefPubMedGoogle Scholar
  3. 3.
    Zheng ZJ, Croft BJ, Giles WH, et al. Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001;104:2158–2163.PubMedGoogle Scholar
  4. 4.
    Fineschi V, Pomara C. A forensic pathological approach to sudden cardiac death. In: Tsokos M, editor. Forensic pathology reviews, vol I. Totowa, NJ: Humana Press, 2004:139–145.Google Scholar
  5. 5.
    Chugh SS, Jui J, Gunson K, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol 2004;44:1268–1275.PubMedGoogle Scholar
  6. 6.
    Virmani R, Burke AP, Farb A, et al. Sudden cardiac death. Cardiovasc Pathol 2001;10:211–218.PubMedGoogle Scholar
  7. 7.
    Mittleman RE. The “negative autopsy.” In: Turillazzi E, editor. La dimensione medico-legale della medicina dello sport. Sports medicine: a forensic approach. Rome: Edizioni Colosseum, 1998:169–194.Google Scholar
  8. 8.
    Cohle SD, Sampson BA. The negative autopsy: sudden cardiac death or other? Cardiovasc Pathol 2001;10:219–222.PubMedGoogle Scholar
  9. 9.
    Higuchi R. Simple and rapid preparation of samples for PCR. In: Ehrlich HA, editor. PCR technology: principles and applications for DNA amplification. New York: Stockton Press, 1989:31–38.Google Scholar
  10. 10.
    Bajanowski T, Rossi L, Biondo B, et al. Prolonged QT interval and sudden infant death — report of two cases. Forensic Sci Int 2001;115:147–153.CrossRefPubMedGoogle Scholar
  11. 11.
    Sato Y, Sugie R, Tsuchiya B, et al. Comparison of the DNA extraction methods for polymerase chain reaction amplification from formalin-fixed and paraffin-embedded tissues. Diagn Mol Pathol 2001;10:265–271.CrossRefPubMedGoogle Scholar
  12. 12.
    Cao W, Hashibe M, Rao JY, et al. Comparison of methods for DNA extraction from paraffin-embedded tissues and buccal cells. Cancer Detect Prev 2003;27:397–404.CrossRefPubMedGoogle Scholar
  13. 13.
    Mygind T, Ostergaard L, Birkelund S, et al. Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair. BMC Microbiol 2003;3:19.CrossRefPubMedGoogle Scholar
  14. 14.
    Konomi N, Lebwohl E, Zhang D. Comparison of DNA and RNA extraction methods for mummified tissues. Mol Cell Probes 2002;16:445–451.CrossRefPubMedGoogle Scholar
  15. 15.
    Bonin S, Petrera F, Niccolini B, et al. PCR analysis in archival postmortem tissues. Mol Pathol 2003; 56:184–186.PubMedGoogle Scholar
  16. 16.
    Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J 1958;20:1–18.PubMedGoogle Scholar
  17. 17.
    Braunwald E, Lambrew CT, Rockoff D, et al. Idiopathic hypertrophic subaortic stenosis. Circulation 1964;30(Suppl IV):3–217.PubMedGoogle Scholar
  18. 18.
    Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002;287:1308–1320.PubMedGoogle Scholar
  19. 19.
    Ommen SR, Nishimura RA. Hypertrophic cardiomyopathy. Curr Probl Cardiol 2004;29:233–291.CrossRefGoogle Scholar
  20. 20.
    Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Circulation 1995;92:785–789.PubMedGoogle Scholar
  21. 21.
    Maron BJ, Epstein SE. Hypertrophic cardiomyopathy: a discussion of nomenclature. Am J Cardiol 1979;43:1242–1244.PubMedGoogle Scholar
  22. 22.
    Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy. J Am Coll Cardiol 1995;26:1699–1708.CrossRefPubMedGoogle Scholar
  23. 23.
    Spirito P, Seidman CE, McKenna WJ, et al. The management of hypertrophic cardiomyopathy. N Engl J Med 1997;336:775–785.CrossRefPubMedGoogle Scholar
  24. 24.
    Nishimura RA, Holmes DR. Hypertrophic obstructive cardiomyopathy. N Engl J Med 2004;350: 1320–1327.CrossRefPubMedGoogle Scholar
  25. 25.
    Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy predicts the risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000;342:1778–1785.CrossRefPubMedGoogle Scholar
  26. 26.
    Boriani G, Maron BJ, Shen WK, Spirito P. Prevention of sudden death in hypertrophic cardiomyopathy: but which defibrillator for which patient? Circulation 2004;110:e38–42.Google Scholar
  27. 27.
    Louie EK, Maron BJ. Hypertrophic cardiomyopathy with extreme increase in left ventricular wall thickness. J Am Coll Cardiol 1986;8:57–65.PubMedGoogle Scholar
  28. 28.
    Elliott PM, Gimeno Blanes JR, Mahon NG, et al. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet 2001;357:420–424.PubMedGoogle Scholar
  29. 29.
    Maron BJ, Roberts WC. Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 1979;59:689–706.PubMedGoogle Scholar
  30. 30.
    Ferrans VJ, Morrow AG, Roberts WC. Myocardial ultrastructure in idiopathic hypertrophic subaortic stenosis. Circulation 1972;45:769–792.PubMedGoogle Scholar
  31. 31.
    St. John Sutton MG, Lie JT, Anderson KR, et al. Histopathological specificity of hypertrophic obstructive cardiomyopathy. Br Heart J 1980;44:433–443.PubMedGoogle Scholar
  32. 32.
    Varnava AM, Elliott PM, Mahon N, et al. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 2001;88:275–279.CrossRefPubMedGoogle Scholar
  33. 33.
    Maron BJ, Anan TJ, Roberts WC. Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 1981;63:882–894.PubMedGoogle Scholar
  34. 34.
    Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol 1979;43:1086–1102.PubMedGoogle Scholar
  35. 35.
    Basso C, Thiene G, Corrado D, et al. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 2000;31:988–998.CrossRefPubMedGoogle Scholar
  36. 36.
    Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy — pathology and pathogenesis. Histopathology 1995;26:493–500.PubMedGoogle Scholar
  37. 37.
    Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology 2004;44:412–427.CrossRefPubMedGoogle Scholar
  38. 38.
    Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 2000;36:2212–2218.CrossRefPubMedGoogle Scholar
  39. 39.
    Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation 2000;102:858–864.PubMedGoogle Scholar
  40. 40.
    McKenna WJ, England D, Doi YL, et al. Arrhythmia in hypertrophic cardiomyopathy. Br Heart J 1981;46:168–172.PubMedGoogle Scholar
  41. 41.
    Watkins H. Sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000;342:422–424.CrossRefPubMedGoogle Scholar
  42. 42.
    Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med 2000;342:365–373.CrossRefPubMedGoogle Scholar
  43. 43.
    Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001;104:557–567.CrossRefPubMedGoogle Scholar
  44. 44.
    Geisterfer-Lowrance AA, Kass S, Tanigawa G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta-cardiac myosin heavy chain gene missense mutation. Cell 1990;62: 999–1006.PubMedGoogle Scholar
  45. 45.
    Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995;332:1058–1064.CrossRefPubMedGoogle Scholar
  46. 46.
    Watkins H, Rosenzweig A, Hwang DS, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 1992;326:1108–1114.PubMedGoogle Scholar
  47. 47.
    Marian AJ. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet 2000;355:58–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Moolman JC, Corfield VA, Posen B, et al. Sudden death due to troponin T mutations. J Am Coll Cardiol 1997;29:549–555.PubMedGoogle Scholar
  49. 49.
    Enjuto M, Francino A, Navarro-Lopez F, et al. Malignant hypertrophic cardiomyopathy caused by Arg723Gly mutation in beta-myosin heavy chain gene. J Mol Cell Cardiol 2000;32:2307–2313.CrossRefPubMedGoogle Scholar
  50. 50.
    Tesson F, Richard P, Charron P, et al. Genotype-phenotype analysis in four families with mutations in the beta-myosin heavy chain gene responsible for familial hypertrophic cardiomyopathy. Hum Mutat 1998;12:385–392.CrossRefPubMedGoogle Scholar
  51. 51.
    Spicer RL, Rocchini AP, Crowley DC, et al. Chronic verapamil therapy in pediatric and young adult patients with hypertrophic cardiomyopathy. Am J Cardiol 1984;53:1614–1619.PubMedGoogle Scholar
  52. 52.
    Gilligan DM, Chan WL, Joshi J, et al. A double-blind, placebo-controlled crossover trial of nadolol and verapamil in mild and moderately symptomatic hypertrophic cardiomyopathy. J Am Coll Cardiol 1993;21:1672–1679.PubMedGoogle Scholar
  53. 53.
    Lakkis NM, Nagueh SF, Dunn JK, et al. Nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy: one-year follow-up. J Am Coll Cardiol 2000;36:852–855.CrossRefPubMedGoogle Scholar
  54. 54.
    Qin JX, Shiota T, Lever HM, et al. Outcome of patients with hypertrophic obstructive cardiomyopathy after percutaneous transluminal septal myocardial ablation and septal myectomy surgery. J Am Coll Cardiol 2001;38:1994–2000.PubMedGoogle Scholar
  55. 55.
    Gallo P, d’Amati G., Cardiomyopathies. In: Silver MD, Gotlieb AI, Schoen FJ, editors. Cardiovascular pathology. Philadelphia: Churchill Livingstone, 2001:285–325.Google Scholar
  56. 56.
    Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis, and treatment. Heart 2000;83:588–595.CrossRefPubMedGoogle Scholar
  57. 57.
    Fontaine G, Fontaliran F, Hebert JL, et al. Arrhythmogenic right ventricular dysplasia. Annu Rev Med 1999;50:17–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Thiene G, Basso C. Arrhythmogenic right ventricular cardiomyopathy: an update. Cardiovasc Pathol 2001;10:109–117.CrossRefPubMedGoogle Scholar
  59. 59.
    Thiene G, Nava A, Corrado D, et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 1988;318:129–133.PubMedGoogle Scholar
  60. 60.
    Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 2000;36:2226–2233.CrossRefPubMedGoogle Scholar
  61. 61.
    Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 1997; 30:1512–1520.CrossRefPubMedGoogle Scholar
  62. 62.
    McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Br Heart J 1994;71:215–218.PubMedGoogle Scholar
  63. 63.
    Obata H, Mitsuoka T, Kikuchi Y, et al. Twenty-seven-year follow-up of arrhythmogenic right ventricular dysplasia. Pacing Clin Electrophysiol 2001;24:510–511.CrossRefPubMedGoogle Scholar
  64. 64.
    Dalla Volta S, Battaglia G, Zerbini E. “Auricularization” of right ventricular pressure curve. Am Heart J 1961;61:25–33.Google Scholar
  65. 65.
    Fontaine G, Guiraudon G, Frank R, et al. Stimulation studies and epicardial mapping in ventricular tachycardia: study of mechanisms and selection for surgery. In: Kulbertus HE, editor. Reentrant arrhythmias: mechanisms and treatment. Lancaster: MTP Press Limited, 1977:334–350.Google Scholar
  66. 66.
    Corrado D, Fontaine G, Marcus FI, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. Circulation 2000;101:E101–E106.PubMedGoogle Scholar
  67. 67.
    Basso C, Thiene G, Corrado D, et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 1996;94:983–991.PubMedGoogle Scholar
  68. 68.
    Midiri M, Finazzo M, Brancato M, et al. Arrhythmogenic right ventricular dysplasia: MR features. Eur Radiol 1997;7:307–312.CrossRefPubMedGoogle Scholar
  69. 69.
    Tandri H, Calkins H, Nasir K, et al. Magnetic resonance imaging findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol 2003;14:476–482.CrossRefPubMedGoogle Scholar
  70. 70.
    Danieli GA, Rampazzo A. Genetics of arrhythmogenic right ventricular cardiomyopathy. Curr Opin Cardiol 2002;17:218–221.CrossRefPubMedGoogle Scholar
  71. 71.
    Rampazzo A, Nava A, Danieli GA, et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23–q24. Hum Mol Genet 1994;3:959–962.PubMedGoogle Scholar
  72. 72.
    Ahmad F, Li D, Karibe A, et al. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 1998;98:2791–2795.PubMedGoogle Scholar
  73. 73.
    Li D, Ahmad F, Gardner MJ, et al. The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12–p14. Am J Hum Genet 2000;66:148–156.CrossRefPubMedGoogle Scholar
  74. 74.
    Melberg A, Oldfors A, Blomstrom-Lundqvist C, et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann Neurol 1999;46:684–692.CrossRefGoogle Scholar
  75. 75.
    Protonotarios N, Tsatsopoulou A, Patsourakos P, et al. Cardiac abnormalities in familial palmoplantar keratosis. Br Heart J 1986;56:321–326.PubMedGoogle Scholar
  76. 76.
    Norgett EE, Hatsell SJ, Carvajal-Huerta L, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000;9:2761–2766.CrossRefPubMedGoogle Scholar
  77. 77.
    Link MS, Wang PJ, Haugh CJ, et al. Arrhythmogenic right ventricular dysplasia: clinical results with implantable cardioverter defibrillators. J Interv Card Electrophysiol 1997;1:41–48.PubMedGoogle Scholar
  78. 78.
    Fontaine G, Tonet J, Gallais Y, et al. Ventricular tachycardia catheter ablation in arrhythmogenic right ventricular dysplasia: a 16-year experience. Curr Cardiol Rep 2000;2:498–506.PubMedGoogle Scholar
  79. 79.
    Maron BJ. Right ventricular cardiomyopathy: another cause of sudden death in the young. N Engl J Med 1988;318:178–180.PubMedGoogle Scholar
  80. 80.
    Gallo P, d’Amati G. Cardiomyopathies. In: Silver MD, Gotlieb AI, Schoen FJ, editors: Cardiovascular pathology. Philadelphia: Churchill Livingstone, 2001:308–309.Google Scholar
  81. 81.
    Michalodimitrakis EN, Tsiftsis DDA, Tsatsakis AM, et al. Sudden cardiac death and right ventricular dysplasia. Am J Forensic Med Pathol 2001;22:19–22.CrossRefPubMedGoogle Scholar
  82. 82.
    Wehrens XH, Vos MA, Doevendans PA, et al. Novel insights in the congenital long QT syndrome. Ann Intern Med 2002;137:981–992.PubMedGoogle Scholar
  83. 83.
    Vincent GM. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med 1998;49:263–274.PubMedGoogle Scholar
  84. 84.
    Zeltser D, Justo D, Halkin A, et al. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine 2003;82:282–290.CrossRefPubMedGoogle Scholar
  85. 85.
    Al-Khatib SM, LaPointe NM, Kramer JM, et al. What clinicians should know about the QT interval. JAMA 2003;289:2120–2127.CrossRefPubMedGoogle Scholar
  86. 86.
    Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002;105:1943–1948.CrossRefPubMedGoogle Scholar
  87. 87.
    Roden DM. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc Res 2001;50:24–231.CrossRefGoogle Scholar
  88. 88.
    Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103:89–95.PubMedGoogle Scholar
  89. 89.
    Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: a prospective international study. Circulation 1985;71:17–21.PubMedGoogle Scholar
  90. 90.
    Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991;84:1136–1144.PubMedGoogle Scholar
  91. 91.
    Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med 1998;339:960–965.CrossRefPubMedGoogle Scholar
  92. 92.
    Locati EH, Zareba W, Moss AJ, et al. Age-and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome. Circulation 1998;97:2237–2244.PubMedGoogle Scholar
  93. 93.
    Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 1999;84:876–879.CrossRefPubMedGoogle Scholar
  94. 94.
    Ali RH, Zareba W, Moss AJ, et al. Clinical and genetic variables associated with acute arousal and nonarousal-related cardiac events among subjects with long QT syndrome. Am J Cardiol 2000;85:457–461.CrossRefPubMedGoogle Scholar
  95. 95.
    Wilde AA, Jongbloed RJ, Doevendans PA, et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol 1999;33:327–332.CrossRefPubMedGoogle Scholar
  96. 96.
    Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999;99:529–533.PubMedGoogle Scholar
  97. 97.
    Swan H, Viitasalo M, Piippo K, et al. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol 1999;34:823–829.PubMedGoogle Scholar
  98. 98.
    Swan H, Toivonen L, Viitasalo M. Rate adaptation of QT intervals during and after exercise in children with congenital long QT syndrome. Eur Heart J 1998;19:508–513.PubMedGoogle Scholar
  99. 99.
    Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med 2000;343:262–267.PubMedGoogle Scholar
  100. 100.
    Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 2001;286:2264–2269.CrossRefPubMedGoogle Scholar
  101. 101.
    Keating M, Atkinson D, Dunn C, et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 1991;252:704–706.PubMedGoogle Scholar
  102. 102.
    Jiang C, Atkinson D, Towbin JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet 1994;8:141–147.CrossRefPubMedGoogle Scholar
  103. 103.
    Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999;97:175–187.CrossRefPubMedGoogle Scholar
  104. 104.
    Wang Q, Li Z, Shen J, et al. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics 1996;34:9–16.CrossRefPubMedGoogle Scholar
  105. 105.
    Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia sudden cardiac death. Nature 2003;421:634–639.CrossRefPubMedGoogle Scholar
  106. 106.
    Fodstad H, Swan H, Auberson M, et al. Loss-of-function mutations of the K(+) channel gene KCNJ2 constitute a rare cause of long QT syndrome. J Mol Cell Cardiol 2004;37:593–602.CrossRefPubMedGoogle Scholar
  107. 107.
    Chen Q, Zhang D, Gingell RL, et al. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation 1999;99:1344–1347.PubMedGoogle Scholar
  108. 108.
    Splawski I, Timothy KW, Vincent GM, et al. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 1997;336:1562–1567.CrossRefPubMedGoogle Scholar
  109. 109.
    Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J 1957;54:59–68.CrossRefPubMedGoogle Scholar
  110. 110.
    Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 2000;36:1–12.CrossRefPubMedGoogle Scholar
  111. 111.
    Groh WJ, Silka MJ, Oliver RP, et al. Use of implantable cardioverter-defibrillators in the congenital long QT syndrome. Am J Cardiol 1996;78:703–706.CrossRefPubMedGoogle Scholar
  112. 112.
    Dorostkar PC, Eldar M, Belhassen B, et al. Long-term follow-up of patients with long-QT syndrome treated with beta-blockers and continuous pacing. Circulation 1999;100:2431–2436.PubMedGoogle Scholar
  113. 113.
    Antzelevitch C, Brugada P, Brugada J, et al. Brugada syndrome: a decade of progress. Circ Res 2002;91:1114–1118.CrossRefPubMedGoogle Scholar
  114. 114.
    Gussak I, Antzelevitch C, Bjerregaard P, et al. The Brugada syndrome: clinical, electrophysiologic, and genetic aspects. J Am Coll Cardiol 1999;33:5–15.CrossRefPubMedGoogle Scholar
  115. 115.
    Antzelevitch C. The Brugada syndrome: ionic basis and arrhythmia mechanisms. J Cardiovasc Electrophysiol 2001;12:268–272.CrossRefPubMedGoogle Scholar
  116. 116.
    Nademanee K, Veerakul G, Nimmannit S, et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595–2600.PubMedGoogle Scholar
  117. 117.
    Wilde AAM, Antzelevitch C, Borggrefe M, et al. The Study Group on the Molecular Basis of Arrhythmias of the European Society of Cardiology. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 2002;106:2514–2519.CrossRefPubMedGoogle Scholar
  118. 118.
    Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 2002;105:1342–1347.CrossRefPubMedGoogle Scholar
  119. 119.
    Alings M and Wilde A. “Brugada” syndrome: clinical data and suggested pathophysiological mechanism. Circulation 1999;99:666–673.PubMedGoogle Scholar
  120. 120.
    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol 1992;20:1391–1396.PubMedGoogle Scholar
  121. 120.
    Brugada J, Brugada R, Antzelevitch C, et al. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 2002;105:73–78.CrossRefPubMedGoogle Scholar
  122. 121.
    Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3. Circulation 1998;97:457–460.PubMedGoogle Scholar
  123. 122.
    Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome. Circulation 2000;102:2509–2515.PubMedGoogle Scholar
  124. 123.
    Smits JP, Eckardt L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 2002;40:350–356.CrossRefPubMedGoogle Scholar
  125. 124.
    Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–515.PubMedGoogle Scholar
  126. 125.
    Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 2000;102:945–947.PubMedGoogle Scholar
  127. 126.
    Junttila MJ, Raatikainen MJ, Karjalainen J, et al. Prevalence and prognosis of subjects with Brugadatype ECG pattern in a young and middle-aged Finnish population. Eur Heart J 2004;25:847–848.CrossRefGoogle Scholar
  128. 127.
    Brugada J, Brugada R, Brugada P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 2003;108:3092–3096.CrossRefPubMedGoogle Scholar
  129. 128.
    Brugada P, Brugada R, Mont L, et al. Natural history of Brugada syndrome: the prognostic value of programmed electrical stimulation of the heart. J Cardiovasc Electrophysiol 2003;14:455–457.CrossRefPubMedGoogle Scholar
  130. 129.
    Kanda M, Shimizu W, Matsuo K, et al. Electrophysiologic characteristics and implications of induced ventricular fibrillation in symptomatic patients with Brugada syndrome. J Am Coll Cardiol 2002;39:1799–1805.CrossRefPubMedGoogle Scholar
  131. 130.
    Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293–296.PubMedGoogle Scholar
  132. 131.
    Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 2001;33:599–613.CrossRefPubMedGoogle Scholar
  133. 132.
    Kurita T, Shimizu W, Inagaki M, et al. The electrophysiologic mechanism of ST-segment elevation in Brugada syndrome. J Am Coll Cardiol 2002;40:330–334.CrossRefPubMedGoogle Scholar
  134. 133.
    Glatter KA, Wang Q, Keating M, et al. Effectiveness of sotalol treatment in symptomatic Brugada syndrome. Am J Cardiol 2004;93:1320–1322.CrossRefPubMedGoogle Scholar
  135. 134.
    Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999;100:1660–1666.PubMedGoogle Scholar
  136. 135.
    Clancy CE, Rudy Y. Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 2002;105:1208–1213.CrossRefPubMedGoogle Scholar
  137. 136.
    Kakishita M, Kurita T, Matsuo K, et al. Mode of onset of ventricular fibrillation in patients with Brugada syndrome detected by implantable cardioverter defibrillator therapy. J Am Coll Cardiol 2000;36:1646–1653.CrossRefPubMedGoogle Scholar
  138. 137.
    Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001;103:485–490.PubMedGoogle Scholar
  139. 138.
    Swan H, Piippo K, Viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol 1999;34:2035–2042.PubMedGoogle Scholar
  140. 139.
    Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69–74.CrossRefPubMedGoogle Scholar
  141. 140.
    Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196–200.PubMedGoogle Scholar
  142. 141.
    Leenhardt A, Lucet V, Denjoy I, et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995;91:1512–1519.PubMedGoogle Scholar
  143. 142.
    Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine-or exercise-induced polymorphic ventricular tachycardia. Circulation 2001;103:2822–2827.PubMedGoogle Scholar
  144. 143.
    Fisher JD, Krikler D, Hallidie-Smith KA. Familial polymorphic ventricular arrhythmias: a quarter century of successful medical treatment based on serial exercise-pharmacologic testing. J Am Coll Cardiol 1999;34:2015–2022.CrossRefPubMedGoogle Scholar
  145. 144.
    Tunwell RE, Wickenden C, Bertrand BM, et al. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 1996;318:477–487.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • Kathryn A. Glatter
    • 1
  • Nipavan Chiamvimonvat
    • 2
  • Yuxia He
    • 1
  • Philippe Chevalier
    • 3
  • Emanuela Turillazzi
    • 4
  1. 1.Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of CaliforniaSacramentoUSA
  2. 2.Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of CaliforniaDavisUSA
  3. 3.Department of Cardiology and Intensive CareHopital Louis PradelLyonFrance
  4. 4.Department of Forensic PathologyUniversity of FoggiaFoggiaItaly

Personalised recommendations