Genetics and Mutations Affecting Osteoclast Development and Function

  • Mark C. Horowitz
  • Melissa A. Kacena
  • Joseph A. Lorenzo
Part of the Topics in Bone Biology book series (TBB, volume 2)


Bone Resorption Leukemia Inhibitory Factor Osteoclast Formation Osteoclast Precursor Mature Osteoclast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Humidan A, Ralston SH, Hughes DE, et al. (1991) Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J Bone Miner Res 6:3–8.PubMedGoogle Scholar
  2. 2.
    Akira S, Hirano T, Taga T, Kishimoto T (1990) Biology of multifunctional cytokines: IL-6 and related molecules (IL-1 and TNF). FASEB J 4:2860–7.PubMedGoogle Scholar
  3. 3.
    Amano H, Yamada S, Felix R (1998) Colony-stimulating factor-1 stimulates the fusion process in osteoclasts. J Bone Miner Res 13:846–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Amling M, Neff L, Priemel M, Schilling AF, Rueger JM, Baron R (2000) Progressive increase in bone mass and development of odontomas in aging osteopetrotic csrc-deficient mice. Bone 27:603–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson DM, Maraskovsky E, Billingsley, et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson KL, Smith KA, Pio F, et al. (1998) Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 92:1576–85.PubMedGoogle Scholar
  7. 7.
    Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochem Biophys Acta 1072, 129–57.PubMedGoogle Scholar
  8. 8.
    Arai F, Miyamoto T, Ohneda O, et al. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor KB (RANK) receptors. J Exp Med 12:1741–54.CrossRefGoogle Scholar
  9. 9.
    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Bain G, Robanus Maandag EC, Izon DJ, et al. (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellido T, Stahl N, Farruggella TJ, Borba V, Yancopoulos GD, Manolagas SC (1996) Detection of receptors for interleukin-6, interleukin-11, leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in bone marrow stromal osteoblastic cells. J Clin Invest 97:431–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319:516–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Beutler B, Cerami A (1987) Cachectin: More than a tumor necrosis factor. N Eng J Med 316:379–85.Google Scholar
  14. 14.
    Black K, Garrett IR, Mundy GR (1991) Chinese hamster ovary cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor bearing nude mice. Endocrinology 128:2657–9.PubMedGoogle Scholar
  15. 15.
    Blair HC, Khan AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Bossard MJ, Tomaszek TA, Thompson SK, et al. (1996) Proteolytic activity of human osteoclast cathepsin I: Expression, purification, activation, and substrate identification. J Biol Chem 271:12517–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Boyce BF, Aufdemorte TB, Garrett R, Yates AJP, Mundy GR (1989) Effects of interleukin-1 on bone turnover in normal mice. Endocrinology 125:1142.PubMedGoogle Scholar
  19. 19.
    Boyce BF, Chen H, Soriano P, Mundy GR (1993) Histomorphometric and immunocytochemical studies of src-related osteopetrosis. Bone 14:335–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Brändström H, Jonsson KB, Vidal O, Ljunghall S, Ohlsson C, Ljunggren Ö (1998) Tumor necrosis factor-α and-β upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochem Biophys Res Commun 248:454–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Bromme D, Okamoto K (1995) The baculovirus cysteine protease has a cathepsin B-like S2-subsite specificity. Biol Chem 376:611–15.Google Scholar
  22. 22.
    Bromme D, Okamoto K, Wang W, Biroc S (1996) Human cathepsin 02, a matrix protein-degrading cysteine protease expressed in osteoclasts: Functional expression of human cathepsin 02 in spodoptera frugiperda and characterization of the enzyme. J Biol Chem 271:2126–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown MT, Cooper JA (1996) Regulation, substrates, and functions of Src. BBA Rev. Cancer 1287:121–49.Google Scholar
  24. 24.
    Bucay N, Sarosi I, Dunstan CR, et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Burger D, Chicheportiche R, Giri JG, Dayer J-M (1995) The inhibitory activity of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 soluble receptor and hindered by type 1 interleukin-1 soluble receptor. J Clin Invest 96:38–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Chambers TJ, Fox S, Jagger CJ, Lean JM, Chow JWM (1999) The role of prostaglandins and nitric oxide in the response of bone to mechanical forces. Osteoarthritis Cartilage 7:422–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Crabtree GR, Olson EN (2002) NFAT signaling: Choreographing the social lives of cells. Cell 109Suppl:S67–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Cerretti DP, Wignall J, Anderson D, Tushinski RJ, Gallis B, Cosman D (1990) Membrane bound forms of human macrophage colony stimulating factor (M-CSF, CSF-1). Prog Clin Biol Res 352:63–70.PubMedGoogle Scholar
  29. 29.
    Cerretti DP, Wignall J, Anderson D, et al. (1988) Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene. Mol Immunol 25:761–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Colotta F, Re F, Muzio M, et al. (1993) Interleukin-1 type II receptor: A decoy target for IL-1 that is regulated by IL-4. Science 261:472–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Dai XM, Ryan GR, Hapel AJ, et al. (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–20PubMedCrossRefGoogle Scholar
  32. 32.
    De La Mata J, Uy HL, Guise TA, et al. (1995) Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest 95:2846–52.PubMedCrossRefGoogle Scholar
  33. 33.
    DeKoter RP, Walsh JC, Singh H (1998) PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 17:4456–68.PubMedCrossRefGoogle Scholar
  34. 34.
    DeKoter RP, Lee H-J, Singh H (2002) PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16:297–309.PubMedCrossRefGoogle Scholar
  35. 35.
    DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–52.PubMedGoogle Scholar
  37. 37.
    Dinarello CA (1993) Blocking interleukin-1 in disease. Blood Purif 11:118–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Dougall WC, Glaccum M, Charrier K, et al. (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Drake FH, Dodds RA, James IR, et al. (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Drake FH, James IE, Connor JR, et al. (1994) Identifi-cation of a novel osteoclast-selective human cysteine proteinase. J Bone Miner Res 9:S177.Google Scholar
  41. 41.
    Eder J (1997) Tumour necrosis factor alpha and interleukin 1 signalling: do MAPKK kinases connect it all? Trends Pharmacol Sci 18:319–22.PubMedGoogle Scholar
  42. 42.
    Edelson JG, Obad S, Geiger R, On A, Artul HJ (1992) Pycnodysostosis. Orthopedic aspects with a description of 14 new cases. Clin Orthop Relat Res 280:264–76.Google Scholar
  43. 43.
    Faccio R, Novack DV, Zallone A, Ross FP, Teitelbaum SL (2003) Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by β3 integrin. J Cell Biol 162:499–509.PubMedCrossRefGoogle Scholar
  44. 44.
    Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL (2003) C-Fms and the αv3 integrin collaborate during osteoclast differentiation. J Clin Invest 111:749–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Felix R, Fleisch H, Elford PR (1989) Bone-resorbing cytokines enhance release of macrophage colony-stimulating activity by the osteoblastic cell MC3T3-E1. Calcif Tissue Int 44:356–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res 5:781–9.PubMedGoogle Scholar
  47. 47.
    Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–4.PubMedGoogle Scholar
  48. 48.
    Fiers W (1993) Tumor Necrosis Factor. In: Sim E (ed) The Natural Immune System: Humoral Factors. IRL Press at Oxford University Press, Oxford, pp 65–119.Google Scholar
  49. 49.
    Franzoso G, Carlson L, Xing L, et al. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178:1733–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Fuller K, Chambers TJ (1989) Effect of arachidonic acid metabolites on bone resorption by isolated rat osteoclasts. J Bone Miner Res 4:209–15.PubMedGoogle Scholar
  52. 52.
    Garnero PO, Borel IB, Ferreras M, et al. (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Gelb BD, Shi G-P, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Glowacki J, Cox KA, Wilcon S (1989) Impaired osteoclast differentiation in subcutaneous implants of bone particles in osteopetrotic mutants. J Bone Miner Res 5:271–8.CrossRefGoogle Scholar
  55. 55.
    Gowen M, Chapman K, Littlewood A, Hughes D, Evans D, Russell RGG (1990) Production of tumor necrosis factor by human osteoblasts is modulated by other cytokines, but not by osteotropic hormones. Endocrinology 126:1250–5.PubMedGoogle Scholar
  56. 56.
    Gowen M, Lazner F, Dodds R, et al. (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Greenfield EM, Horowitz MC, Lavish SA (1996) Stimulation by parathyroid hormone of interleukin-6 and leukemia inhibitory factor expression in osteoblasts is an immediate-early gene response induced by cAMP signal transduction. J Biol Chem 271:10984–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Grigoriadis AE, Schellander K, Wang Z-Q, Wagner EF (1993) Osteoblasts are target cells for transformation in C-fos transgenic mice. J Cell Biol 122:685–701.PubMedCrossRefGoogle Scholar
  59. 59.
    Grigoriadis AE, Wang Z-Q, Cecchini MG, et al. (1994) c-FOS: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Guise TA, Mundy GR (1998) Cancer and bone. Endocrine Reviews 19:18–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Hattersley G, Kerby JA, Chambers TJ (1991) Generation of osteoclast precursors in multilineage hematopoietic colonies. Endocrinology 128:259–62.PubMedGoogle Scholar
  62. 62.
    Hattersley G, Dorey E, Horton MA, Chambers TJ (1988) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J Cell Physiol 137:199–203.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirano T, Akira S, Taga T, Kishimoto T (1990) Biological and clinical aspects of interleukin 6. Immunol Today 11:443–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1998) Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun 250:776–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Hofstetter W, Wetterwald A, Cecchini MC, Felix R, Fleisch H, Mueller C (1992) Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts. Proc Natl Acad Sci USA 89:9637–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R (1992) Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biology 119:1003–13.CrossRefGoogle Scholar
  67. 67.
    Horowitz MC, Xi Y, Pflugh DL, et al. (2002) Severe osteopenia with increased osteoclast progenitors in Pax5 deficient mice. JBMR #1098:S148 (abst).Google Scholar
  68. 68.
    Hsu H, Lacey DL, Dunstan CR, et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Huang J, Gao X, Li S, Cao Z (1997) Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc Natl Acad Sci USA 94:12829–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Humphrey MB, Ogasawara K, Yao W, et al. (2004) The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res 19:224–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T (1995) Molecular cloning of human cDNA for cathepsin K: Novel cysteine proteinase predominately expressed in bone. Biochem Biophys Res Commun 206:89–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Insogna K, Tanaka S, Neff L, Horne W, Levy J, Baron R (1997) Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts. Mol Reprod Dev 46:104–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Insogna KL, Sahni M, Grey AB, et al. (1997) Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 100:2476–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Insogna K, Tanaka S, Neff L, Horne W, Levy J, Baron R (1997) Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts. Molecular Reproduction & Development 46:104–8.CrossRefGoogle Scholar
  75. 75.
    Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Ishida N, Hayashi K, Hoshijima M, et al. (2002) Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 277:41147–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Ishimi Y, Miyaura C, Jin CH, et al. (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–303.PubMedGoogle Scholar
  78. 78.
    Ishimi Y, Abe E, Jin CH, et al. (1992) Leukemia inhibitory factor/differentiation-stimulating factor (LIF/D-factor): Regulation of its production and possible roles in bone metabolism. J Cell Physiol 152:71–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Jilka RL, Hangoc G, Girasole G, et al. (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Jimi E, Shuto T, Koga T (1995) Macrophage colony-stimulating factor and interleukin-1a maintain the survival of osteoclast-like cells. Endocrinology 136:808–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA (1996) A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res 6:1050–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Kafienah W, Brömme D, Buttle DJ, Croucher LJ, Hollander AJ (1998) Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem 331:727–32.Google Scholar
  83. 83.
    Kaifu T, Nakahara J, Inui M, et al.(2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL-and TNFalpha-induced osteoclastogenesis. J Bone Miner Res 18:443–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Kawasaki K, Gao YH, Yokose S, et al. (1997) Osteoclasts are present in gp130-deficient mice. Endocrinology 138:4959–65.PubMedCrossRefGoogle Scholar
  86. 86.
    Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop 313:36–46.PubMedGoogle Scholar
  87. 87.
    Kee BL, Murre C (1998) Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helixloop-helix transcription factor E12. J Exp Medicine 188:699–713.CrossRefGoogle Scholar
  88. 88.
    Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76:253–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J (2001) Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res 16:1444–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Kobayashi K, Takahashi N, Jimi E, et al. (2000) Tumor Necrosis Factor alpha Stimulates Osteoclast Differentiation by a Mechanism Independent of the ODF/RANKL-RANK Interaction. J Exp Med 191:275–86.PubMedCrossRefGoogle Scholar
  91. 91.
    Kodama H, Yamasaki A, Nose M, et al. (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony stimulating factor. J Exp Med 173:269–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Koga T, Inul M, Inoue K, et al. (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–63.PubMedCrossRefGoogle Scholar
  93. 93.
    Kong YY, Yoshida H, Sarosi I, et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Korherr C, Hofmeister R, Wesche H, Falk W (1997) A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur J Immunol 27:262–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Kurihara N, Chenu C, Civin CI, Roodman GD (1990) Identification of committed mononuclear precursors for osteoclast-like cells formed in long-term marrow cultures. Endocrinology 126:2733–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD (1990) IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol 144:4226–30.PubMedGoogle Scholar
  97. 97.
    Lacey DL, Timms E, Tan H-L, et al. (1998) Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Lacey DL, Tan HL, Lu J, et al. (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–48.PubMedGoogle Scholar
  99. 99.
    Lagasse E, Weissman IL (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89:1021–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Lakkakorpi PT, Brett A, Lipfert L, Rodan GA, Duong Le T (2003) PYK2 atuophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem 278:11502–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee MY, Eyre DR, Osborne WR (1991) Isolation of murine osteoclast colony-stimulating factor. Proc Natl Acad Sci USA 88:8500–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Lees RL, Heersche JNM (1999) Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res 14:937–45.PubMedCrossRefGoogle Scholar
  103. 103.
    Li J, Sarosi I, Yan XQ, et al. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Li H, Cuartas E, Cui W, et al. (2004) Irak-m is a negative regulator of osteoclast. In: Proceedings: Advances in Skeletal Anabolic Agents for the Treatment of Osteoporosis, ASBMR 35, 23 (Abstract).Google Scholar
  105. 105.
    Li X, Okada Y, Pilbeam CC, Lorenzo, et al. (2000) Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocinology 141:2054–61.CrossRefGoogle Scholar
  106. 106.
    Li YP, Alexander M, Wucherpfennig AL, Yelick P, Chen W, Stashenko P (1995) Cloning and complete coding sequence of a novel human cathepsin expressed in giant cells of osteoclastomas. J Bone Miner Res 10:1197–2202.PubMedGoogle Scholar
  107. 107.
    Li YP, Chen W (1999) Characterization of mouse cathepsin K gene, the gene promoter, and the gene expression. J Bone Miner Res 14:487–99.PubMedCrossRefGoogle Scholar
  108. 108.
    Lin H, Grosschedl R (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376:263–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Linkhart TA, Linkhart SG, MacCharles DC, Long DL, Strong DD (1991) Interleukin-6 messenger RNA expression and interleukin-6 protein secretion in cells isolated from normal human bone: regulation by interleukin-1. J Bone Miner Res 6:1285–94.PubMedGoogle Scholar
  110. 110.
    Littlewood EA, Kokubo T, Ishibashi O, et al. (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20:81–6.CrossRefGoogle Scholar
  111. 111.
    Lomaga MA, Yeh WC, Sarosi I, et al. (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–24.PubMedCrossRefGoogle Scholar
  112. 112.
    Lorenzo JA, Sousa S, Alander C, Raisz LG, Dinarello CA (1987) Comparison of the bone-resorbing activity in the supernatants from phytohemagglutinin-stimulated human peripheral blood mononuclear cells with that of cytokines through the use of an antiserum to interleukin 1. Endocrinology 121:1164–70.PubMedGoogle Scholar
  113. 113.
    Lorenzo JA, Naprta A, Rao Y, et al. (1998) Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology 139:3022–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Lorenzo JA, Sousa SL, Leahy CL (1990) Leukemia inhibitory factor (LIF) inhibits basal bone resorption in fetal rat long bone cultures. Cytokine 2:266–71.PubMedCrossRefGoogle Scholar
  115. 115.
    Lowik CW, Van der P G, Bloys H, et al. (1989) Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogeneis. Biochem Biophys Res Commun 162:1546–52.PubMedCrossRefGoogle Scholar
  116. 116.
    Luchin A, Suchting S, Merson T, et al. (2001) Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem 276:36703–10.PubMedCrossRefGoogle Scholar
  117. 117.
    Luchin A, Purdom G, Murphy K, et al. (2000) The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J Bone Miner Res 15:451–60.PubMedCrossRefGoogle Scholar
  118. 118.
    Manolagas SC, Jilka RL (1995) Mechanisms of disease: Bone marrow, cytokines, and bone remodeling — Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–11.PubMedCrossRefGoogle Scholar
  119. 119.
    Manolagas SC, Bellido T, Jilka RL (1995) New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: Roles of IL-6 and gp130. Int’l J Immunopharm 17:109–16.CrossRefGoogle Scholar
  120. 120.
    Maroteaux P, Lamy M (1962) Pyknodysostosis. Presse Med 70:999–1002.PubMedGoogle Scholar
  121. 121.
    Martin MU, Falk W (1997) The interleukin-1 receptor complex and interleukin-1 signal transduction. Eur Cytokine Netw 8:5–17.PubMedGoogle Scholar
  122. 122.
    Marusic A, Kalinowski JF, Jastrzebski S, Lorenzo JA (1993) Production of leukemia inhibitory factor mRNA and protein by malignant and immortalized bone cells. J Bone Miner Res 8:617–24.PubMedGoogle Scholar
  123. 123.
    Marzia M, Sims NA, Voit S, et al. (2000) Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biology 151:311–20.CrossRefGoogle Scholar
  124. 124.
    Matsuo K, Galson DL, Zhao C, et al. (2004) Nuclear Factor of Activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–80.PubMedCrossRefGoogle Scholar
  125. 125.
    McHugh KP, Hodivala-Dilke K, Zheng M-H, et al. (2000) Mice lacking [beta]3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–44.PubMedCrossRefGoogle Scholar
  126. 126.
    Missbach M, Jeschke M, Feyen J, et al. (1999) A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone 24:437–49.PubMedCrossRefGoogle Scholar
  127. 127.
    Mizuno A, Amizuka N, Irie K, et al. (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–15.PubMedCrossRefGoogle Scholar
  128. 128.
    Mócsai A, Humphrey MB, Van Ziffle JAG, et al. (2004) The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 101:6158–63.PubMedCrossRefGoogle Scholar
  129. 129.
    Moore KJ (1995) Insight into the microphthalmia gene. Trends Genet 11:442–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE (2001) Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci USA 98:5798–803.PubMedCrossRefGoogle Scholar
  131. 131.
    Mundy GR (1989) Local factors in bone remodeling. Recent Prog Horm Res 45:507–27.PubMedGoogle Scholar
  132. 132.
    Murphy HM (1973) The osteopetrotic syndrome in the microphthalmic mutant mouse. Calcif Tissue Res 13:19–26.PubMedCrossRefGoogle Scholar
  133. 133.
    Naito A, Azuma S, Tanaka S, et al. (1999) Severe osteopetrosis, defective interleukin-1 signaling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Nutt SL, Heavey B, Rolink AG, Busslinger M (1999) Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401:556–62.PubMedCrossRefGoogle Scholar
  135. 135.
    O’Riordan M, Grosschedl R (1999) Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11:21–31.PubMedCrossRefGoogle Scholar
  136. 136.
    Okada Y, Lorenzo JA, Freeman AM, et al. (2000) Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest 105:823–32.PubMedCrossRefGoogle Scholar
  137. 137.
    Okaji M, Sakai H, Sakai E, et al. (2003) The regulation of bone resorption in tooth formation and eruption processes in mouse alveolar crest devoid of cathepsin K. J Pharmacol Sci 91:285–294.PubMedCrossRefGoogle Scholar
  138. 138.
    Oliff A (1988) The role of tumor necrosis factor (cachectin) in cachexia. Cell 54:141–2.PubMedCrossRefGoogle Scholar
  139. 139.
    Orkin SH (2000) Diversification of hematopoietic stem cells to specific lineages. Nat Rev Genet 1:57–64.PubMedCrossRefGoogle Scholar
  140. 140.
    Pacifici R, Rifas L, McCracken R, Avioli LV (1990) The role of interleukin-1 in postmenopausal bone loss. Exp Gerontol 25:309–16.PubMedCrossRefGoogle Scholar
  141. 141.
    Palmqvist P, Persson E, Conaway HH, Lerner UH (2002) IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-kappaB Ligand, Osteoprotegerin, and Receptor Activator of NF-kappaB in Mouse Calvariae. J Immunol 169:3353–62.PubMedGoogle Scholar
  142. 142.
    Pfeffer K, Matsuyama T, Kündig TM, et al. (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–67.PubMedCrossRefGoogle Scholar
  143. 143.
    Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD (1989) Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Min Res 4:113–18.Google Scholar
  144. 144.
    Poli V, Balena R, Fattori E, et al. (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO Journal 13:1189–96.PubMedGoogle Scholar
  145. 145.
    Raisz LG (1999) Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage 7:419–21PubMedCrossRefGoogle Scholar
  146. 146.
    Rantakokko J, Aro HT, Savontaus M, Vuorio E (1996) Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett 393:307–13.PubMedCrossRefGoogle Scholar
  147. 147.
    Reddy SV, Takahashi S, Dallas M, Williams RE, Neckers L, Roodman GD (1994) Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumors of bone. J Bone Miner Res 9:753–7.PubMedGoogle Scholar
  148. 148.
    Reid IR, Lowe C, Cornish J, et al. (1990) Leukemia inhibitory factor: a novel bone-active cytokine. Endocinology 126:1416–20.Google Scholar
  149. 149.
    Roggia C, Gao Y, Cenci S, et al. (2001) Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Roodman GD (1996) Advances in Bone Biology: The osteoclast. Endocrine Reviews 17:308–32.PubMedCrossRefGoogle Scholar
  151. 151.
    Roodman GD (1992) Interleukin-6: an osteotropic factor? J Bone Miner Res 7:475–8.PubMedGoogle Scholar
  152. 152.
    Roodman GD, Kurihara N, Ohsaki Y, et al. (1992) A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest 89:46–52.PubMedCrossRefGoogle Scholar
  153. 153.
    Roth P, Stanley ER (1992) The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol 181:141–67.PubMedGoogle Scholar
  154. 154.
    Rothe J, Lesslauer W, Lotscher H, et al. (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802.PubMedCrossRefGoogle Scholar
  155. 155.
    Röther U, Komitowski D, Schubert FR, Wagner EF (1989) c-fos expression induces bone tumors in transgenic mice. Oncogene 4:861–5.Google Scholar
  156. 156.
    Rubin J, Fan X, Thornton D, Bryant R, Biskobing D (1996) Regulation of murine osteoblast macrophage colony-stimulating factor production by 1,25(OH)2D3. Calcif Tissue Int 59:291–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Saftig P, Hunziker E, Wehmeyer O, et al. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Sanjay A, Houghton A, Neff L, et al. (2001) Cbl Associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152:181–96.PubMedCrossRefGoogle Scholar
  159. 159.
    Sarma U, Flanagan AM (1996) Macrophage colonystimulating factor induces substantial osteoclast generation and bone resorption in human bone marrow cultures. Blood 88:2531–40.PubMedGoogle Scholar
  160. 160.
    Schwartzberg PL, Xing L, Hoffman O, et al. (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/-mutant mice. Genes & Development 11:2835–44.CrossRefGoogle Scholar
  161. 161.
    Screpanti I, Romani L, Musiani P, et al. (1995) Lymphoproliferative disorder and imbalance T-helper response in C-EBP beta-deficient mice. EMBO 14:1932–41.Google Scholar
  162. 162.
    Shi GP, Chapman HA, Bhairi SM, DeLeeuw C, Reddy VY, Weiss SJ (1995) Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett 357:129–34.PubMedCrossRefGoogle Scholar
  163. 163.
    Shultz LD, Schweitzer PA, Rajan TV, et al. (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphates (Hcph) gene. Cell 73:1445–54.PubMedCrossRefGoogle Scholar
  164. 164.
    Simonet WS, Lacey DL, Dunstan CR, et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–19.PubMedCrossRefGoogle Scholar
  165. 165.
    Sims JE, Gayle MA, Slack JL, et al. (1993) Interleukin 1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci USA 90:6155–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-srd proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702.PubMedCrossRefGoogle Scholar
  167. 167.
    Steingrimsson E, Moore KJ, Lamoreux ML, et al. (1994) Molecular basis of mouse microphthalmia mi mutations helps explain their developmental and phenotypic consequences. Nat Genet. 8:256–63.PubMedCrossRefGoogle Scholar
  168. 168.
    Suzawa T, Miyaura C, Inada M, et al. (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141:1554–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Tagaya H, Kunisada T, Yamazaki H, et al. (2000) Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood 95:3363–70.PubMedGoogle Scholar
  170. 170.
    Takayanagi H, Kim S, Koga T, et al. (2002) Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Dev Cell 3:889–901.PubMedCrossRefGoogle Scholar
  171. 171.
    Tamura T, Udagawa N, Takahashi N, et al. (1993) Soluble interleukin-6 receptor triggers osteoclast for-106 Bone Resorption mation by interleukin 6. Proc Natl Acad Sci USA 90:11924–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Tanaka S, Amling M, Neff L, et al. (1996) c-Cbl is downstream of c-Src in a signaling pathway necessary for bone resorption. Nature 383:528–31.PubMedCrossRefGoogle Scholar
  173. 173.
    Tezuka K, Tezuka Y, Maijima A, et al. (1994) Molecular cloning of a possible cytokine proteins predominantly expressed in osteoclasts. J Biol Chem 269:1106–9.PubMedGoogle Scholar
  174. 174.
    Thesingh CW, Scherft JP (1985) Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse. Bone 6:43–52.PubMedCrossRefGoogle Scholar
  175. 175.
    Tiffee JC, Xing L, Nilsson S, Boyce BF (1999) Dental abnormalities associated with failure of tooth eruption in src knockout and op/op mice. Calcif Tissue Int 65:53–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Tondravi MM, McKercher, Anderson K, et al. (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386:81–4.PubMedCrossRefGoogle Scholar
  177. 177.
    Udagawa N, Takahashi N, Akatsu, T, et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125:1805–13.PubMedCrossRefGoogle Scholar
  178. 178.
    Umeda S, Beamer WG, Takagi K, et al. (1999) Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol 155:223–33.PubMedGoogle Scholar
  179. 179.
    Urbanek P, Wang Z, Fetka I, et al. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–12.PubMedCrossRefGoogle Scholar
  180. 180.
    Van Beek E, Van der Wee-Pals L, et al. (1993) Leukemia inhibitory factor inhibits osteoclastic resorption, growth, mineralization, and alkaline phosphatase activity in fetal mouse metacarpal bones in culture. J Bone Miner Res 8:191–8.PubMedGoogle Scholar
  181. 181.
    van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–98.PubMedCrossRefGoogle Scholar
  182. 182.
    Vargas SJ, Naprta A, Glaccum M, Lee SK, Kalinowski J, Lorenzo JA (1996) Interleukin-6 expression and histomorphometry of bones from mice deficient for receptors for interleukin-1 or tumor necrosis factor. J Bone Miner Res 11:1736–44.PubMedGoogle Scholar
  183. 183.
    Velasco G, Ferrando AA, Puente XS, Sanchez LM, Lopez-Otin CJ (1994) Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269:27136–42.PubMedGoogle Scholar
  184. 184.
    Vidal ON, Sjögren K, Eriksson BI, Ljunggren Ö, Ohlsson C (1998) Osteoprotegerin mRNA is increased by interleukin-1a in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells. Biochem Biophys Res Commun 248:696–700.PubMedCrossRefGoogle Scholar
  185. 185.
    Walker DG (1975) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190:784–5.PubMedCrossRefGoogle Scholar
  186. 186.
    Wang Z-Q, Grigoriadis AE, Möhle-Steinlein U, Wagner EF (1991) A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumours in embryonic stem cell chimeras. EMBO 10:2437–50.Google Scholar
  187. 187.
    Wang Z-Q, Grigoriadis AE, Wagner EF (1993) Stable murine chondrogenic cell lines derived from c-fos-induced cartilage tumors. J Bone Miner Res 8:839–47.PubMedGoogle Scholar
  188. 188.
    Wang Z-Q, Ovitt C, Grigoriadis AE, et al. (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360:741–5.PubMedCrossRefGoogle Scholar
  189. 189.
    Wani MR, Fuller K, Kim NS, Choi YW, Chambers T (1999) Prostaglandin E2 cooperates with TRANCE in osteoclast induction from hemopoietic precursors: Synergistic activation of differentiation, cell spreading, and fusion. Endocrinology 140:1927–35.PubMedCrossRefGoogle Scholar
  190. 190.
    Ware CB, Horowitz MC, Renshaw BR, et al. (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283–99.PubMedGoogle Scholar
  191. 191.
    Weir EC, Horowitz MC, Baron R, Centrella M, Kacinski BM, Insogna KL (1993) Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Miner Res 8:1507–18.PubMedCrossRefGoogle Scholar
  192. 192.
    Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272:7727–31.PubMedCrossRefGoogle Scholar
  193. 193.
    Wiktor Jedrzejczak W, Bartocci A, Ferrante A Jr, et al. (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–32.PubMedCrossRefGoogle Scholar
  194. 194.
    Wong BR, Rho J, Arron J, et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells. J Biol Chem 272:25190–4.PubMedCrossRefGoogle Scholar
  195. 195.
    Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y (1998) The TRAF family of signal trans-Genetics and Mutations Affecting Osteoclast Development and Function 107 ducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 273:28355–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–76.PubMedCrossRefGoogle Scholar
  197. 197.
    Xing L, Bushnell TP, Carlson L, et al. (2002) NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK-and Cytokine-Mediated Osteoclastogenesis. J Bone Miner Res 17:1200–10.PubMedCrossRefGoogle Scholar
  198. 198.
    Yao GQ, Sun BH, Hammond EE, et al. (1998) The cellsurface form of colony-stimulating factor-1 is regulated by osteotropic agents and supports formation of multinucleated osteoclast-like cells. J Biol Chem 273:4119–28.PubMedCrossRefGoogle Scholar
  199. 199.
    Yamamoto T, Ozono K, Kasayama S, et al. (1996) Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune-Albright syndrome. J Clin Invest 98:30–5.PubMedCrossRefGoogle Scholar
  200. 200.
    Yasuda H, Shima N, Nakagawa N, et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–602.PubMedCrossRefGoogle Scholar
  201. 201.
    Yoshida H, Hayashi S, Kunisada T, et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–4.PubMedCrossRefGoogle Scholar
  202. 202.
    Yoshida K, Oida H, Kobayashi T, et al. (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA 99:4580–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Mark C. Horowitz
  • Melissa A. Kacena
  • Joseph A. Lorenzo

There are no affiliations available

Personalised recommendations