Skip to main content

Regulation of Osteoclast Activity

  • Chapter

Part of the book series: Topics in Bone Biology ((TBB,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi M, Fischer EH, Ihle J, Imai K, Jirik F, Neel B, et al. (1996) Mammalian SH2-containing protein tyrosine phosphatases. Cell. 85:15.

    PubMed  CAS  Google Scholar 

  2. Andersen JN, Elson A, Lammers R, Romer J, Clausen JT, Moller KB, et al. (2001) Comparative study of protein tyrosine phosphatase-ɛ isoforms: membrane localization confers specificity in cellular signalling. Biochem J 354:581–90.

    Article  PubMed  CAS  Google Scholar 

  3. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–36.

    Article  PubMed  CAS  Google Scholar 

  4. Aoki K, DiDomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, et al. (1999) The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogeneisis and osteoclast resorbing activity: increased resorption and osteopenia in mev/mev mutant mice. Bone 25:261–7.

    Article  PubMed  CAS  Google Scholar 

  5. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J Exp Med 190:1741–54.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong AP, Tometsko ME, Glaccum M, Sutherlan CL, Cosman D, Dougall WC (2002) A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem 277:44347–56.

    PubMed  CAS  Google Scholar 

  7. Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, et al. (2001) A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (TRANCE) and CD40Lmediated akt activation. J Biol Chem 276:30011–17.

    Article  PubMed  CAS  Google Scholar 

  8. Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar MG (1988) Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 106:1863–72.

    Article  PubMed  CAS  Google Scholar 

  9. Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101: 2210–22.

    Article  PubMed  CAS  Google Scholar 

  10. Baron R, Neff L, Roy C, Boisvert A, Caplan M (1986) Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell 46:311–20.

    PubMed  CAS  Google Scholar 

  11. Berry V, Rathod H, Pulman LB, Datta HK (1994) Immunofluorescent evidence for the abundance of focal adhesion kinase in the human and avian osteoclasts and its down regulation by calcitonin. J Endocrinol 141:R11–15.

    Article  PubMed  CAS  Google Scholar 

  12. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–7.

    PubMed  CAS  Google Scholar 

  13. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, et al. (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 271:12517–24.

    PubMed  CAS  Google Scholar 

  14. Bouchon A, Hernandez-Munain C, Cella M, Colonna M (2001) A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med 194:1111–22.

    Article  PubMed  CAS  Google Scholar 

  15. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:1622–7.

    Article  PubMed  CAS  Google Scholar 

  16. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–42.

    Article  PubMed  CAS  Google Scholar 

  17. Cary LA, Han DC, Polte TR, Hanks SK, Guan JL (1998) Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140:211–21.

    Article  PubMed  CAS  Google Scholar 

  18. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M (2003) Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 198:645–51.

    Article  PubMed  CAS  Google Scholar 

  19. Chabre O, Conklin BR, Lin HY, Lodish HF, Wilson E, Ives HE, et al. (1992) A recombinant calcitonin receptor independently stimulates 3′,5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol Endocrinol 6:551–6.

    Article  PubMed  CAS  Google Scholar 

  20. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406.

    Article  PubMed  CAS  Google Scholar 

  21. Chambers TJ, Fuller K, Darby JA, Pringle JA, Horton MA (1986) Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone Miner 1:127–35.

    PubMed  CAS  Google Scholar 

  22. Chambers TJ, Magnus CJ (1982) Calcitonin alters behaviour of isolated osteoclasts. J Pathol 136:27–39.

    Article  PubMed  CAS  Google Scholar 

  23. Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66:383–99.

    PubMed  CAS  Google Scholar 

  24. Chellaiah M, Fitzgerald C, Alvarez U, Hruska K (1998) c-Src is required for stimulation of gelsolin-associated phosphatidylinositol 3-kinase. J Biol Chem 273:11908–16.

    Article  PubMed  CAS  Google Scholar 

  25. Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA (2000) Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol 148:665–78.

    Article  PubMed  CAS  Google Scholar 

  26. Chen HE, Chang S, Trub T, Neel BG (1996) Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 16:3685–97.

    PubMed  CAS  Google Scholar 

  27. Chen Y, Shyu J-F, Santhanagopal A, Inoue D, David J-P, Dixon SJ, et al. (1998) The calcitonin receptor stimulates Shc tyrosine phosphorylation and Erk1/2 activation. Involvement of Gi, protein kinase C, and calcium. J Biol Chem 273:19809–16.

    PubMed  CAS  Google Scholar 

  28. Chengalvala MV, Bapat AR, Hurlburt WW, Kostek B, Gonder DS, Mastroeni RA, et al. (2001) Biochemical characterization of osteo-testicular protein tyrosine phosphatase and its functional significance in rat primary osteoblasts. Biochemistry 40:814–21.

    Article  PubMed  CAS  Google Scholar 

  29. Chiusaroli R, Knobler H, Luxenburg C, Sanjay A, Granot-Attas S, Tiran Z, et al. (2004) Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 15:234–44.

    PubMed  CAS  Google Scholar 

  30. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268: 233–9.

    PubMed  CAS  Google Scholar 

  31. Crippes BA, Engleman VW, Settle SL, Delarco J, Ornberg RL, Helfrich MH, et al. (1996) Antibody to β3 integrin inhibits osteoclast-mediated bone resorption in the thyroparathyroidectomized rat. Endocrinology 137:918–24.

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham CC, Stossel TP, Kwiatkowski DJ (1991) Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251:1233–6.

    PubMed  CAS  Google Scholar 

  33. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (1998) Characterization of the intracellular domain of receptor activator of NF-κB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-κB and c-Jun N-terminal kinase. J Biol Chem 273:20551–5.

    Article  PubMed  CAS  Google Scholar 

  34. David J-P, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF (2002) JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J Cell Sci 115:4317–25.

    Article  PubMed  CAS  Google Scholar 

  35. Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 109:1817–26.

    Article  PubMed  CAS  Google Scholar 

  36. Daws MR, Lanier LL, Seaman WE, Ryan JC (2001) Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur J Immunol 31:783–91.

    Article  PubMed  CAS  Google Scholar 

  37. Delaisse JM, Eeckhout Y, Neff L, Francois-Gillet C, Henriet P, Su Y, et al. (1993) (Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment. J Cell Sci 106:1071–82.

    PubMed  CAS  Google Scholar 

  38. Della Rocca GJ, Maudsley S, Daaka Y, Lefkowitz RJ, Luttrell LM (1999) Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 274:13978–84.

    PubMed  CAS  Google Scholar 

  39. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi-and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 272:19125–32.

    PubMed  CAS  Google Scholar 

  40. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383:547–50.

    Article  PubMed  CAS  Google Scholar 

  41. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. (1999) RANK is essential for osteoclast and lymph node development. Genes & Dev 13:2412–24.

    CAS  Google Scholar 

  42. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of αvβ3 integrin, and phosphorylated by Src kinase. J Clin Invest 102:881–92.

    PubMed  CAS  Google Scholar 

  43. Duong LT, Nakamura I, Lakkakorpi PT, Lipfert L, Bett AJ, Rodan GA (2001) Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2. J Biol Chem 276:7484–92.

    Article  PubMed  CAS  Google Scholar 

  44. Elson A (1999) Protein tyrosine phosphatase e increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene 18: 7535–42.

    Article  PubMed  CAS  Google Scholar 

  45. Elson A, Leder P (1995) Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase ɛ. Proc Natl Acad Sci USA 92:12235–9.

    PubMed  CAS  Google Scholar 

  46. Elson A, Leder P (1995) Protein-tyrosine phosphatase ɛ. An isoform specifically expressed in mouse mammary tumors initiated by v-Ha-ras or neu. J Biol Chem 270:26116–22.

    PubMed  CAS  Google Scholar 

  47. Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL, et al. (1997) A peptidomimetic antagonist of the αVβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest 99:2284–892.

    PubMed  CAS  Google Scholar 

  48. Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62: 453–81.

    PubMed  CAS  Google Scholar 

  49. Feng X, Takeshita S, Namba N, Wei S, Teitelbaum SL, Ross FP (2002) Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony-stimulating factor receptor play distinct roles in osteoclast differentiation and function. Endocrinology 143:4868–74.

    Article  PubMed  CAS  Google Scholar 

  50. Fisher JE, Caulfield MP, Sato M, Quartuccio HA, Gould RJ, Garsky VM, et al. (1993) Inhibition of osteoclastic bone resorption in vivo by echistatin, an “arginylglycyl-aspartyl” (RGD)-containing protein. Endocrinology 132:1411–13.

    Article  PubMed  CAS  Google Scholar 

  51. Flores ME, Heinegard D, Reinholt FP, Andersson G (1996) Bone sialoprotein coated on glass and plastic surfaces is recognized by different β3 integrins. Exp Cell Res 227:40–6.

    Article  PubMed  CAS  Google Scholar 

  52. Force T, Bonventre JV, Flannery MR, Gorn AH, Yamin M, Goldring SR (1992) A cloned porcine renal calcitonin receptor couples to adenylyl cyclase and phospholipase C. Am J Physiol 262:F1110–15.

    PubMed  CAS  Google Scholar 

  53. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. (1997) Requirement for NF-κB in osteoclast and B-cell development. Genes Dev 11:3482–96.

    PubMed  CAS  Google Scholar 

  54. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–6.

    PubMed  CAS  Google Scholar 

  55. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178:1733–44.

    Article  PubMed  CAS  Google Scholar 

  56. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J Biol Chem 273:34120–7.

    Article  PubMed  CAS  Google Scholar 

  57. Gelb BD, Shi G-P, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–8.

    PubMed  CAS  Google Scholar 

  58. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–33.

    Article  PubMed  CAS  Google Scholar 

  59. Gil-Henn H, Elson A (2003) Tyrosine phosphatase-ɛ activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J Biol Chem 278:15579–86.

    Article  PubMed  CAS  Google Scholar 

  60. Gil-Henn H, Volohonsky G, Elson A (2001) Regulation of protein-tyrosine phosphatases α and ɛ by calpain-mediated proteolytic cleavage. J Biol Chem 276: 31772–9.

    Article  PubMed  CAS  Google Scholar 

  61. Gil-Henn H, Volohonsky G, Toledano-Katchalski H, Gandre S, Elson A (2000) Generation of novel cytoplasmic forms of protein tyrosine phosphatase epsilon by proteolytic processing and translational control. Oncogene 19:4375–84.

    Article  PubMed  CAS  Google Scholar 

  62. Green MC, Shultz LD (1975) Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered 66:250–8.

    PubMed  CAS  Google Scholar 

  63. Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K (2000) Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141:2129–38.

    Article  PubMed  CAS  Google Scholar 

  64. Grigoriadis AE, Wang Z-Q, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, et al. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–8.

    PubMed  CAS  Google Scholar 

  65. Hakak Y, Martin GS (1999) Ubiquitin-dependent degradation of active Src. Curr. Biol 9:1039–42.

    Article  PubMed  CAS  Google Scholar 

  66. Hakola HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232:1–173.

    CAS  Google Scholar 

  67. Hall TJ, Chambers TJ (1989) Optimal bone resorption by isolated rat osteoclasts requires chloride/bicarbonate exchange. Calcif Tissue Int 45:378–80.

    PubMed  CAS  Google Scholar 

  68. Hamilton JA (1997) CSF-1 signal transduction. J Leukoc Biol 62:145–55.

    PubMed  CAS  Google Scholar 

  69. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BRG (1998) Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4-and IL-13-dependent signal transduction. J Biol Chem 273:33893–6.

    Article  PubMed  CAS  Google Scholar 

  70. Hattersley G, Dorey E, Horton MA, Chambers TJ (1988) Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J Cell Physiol 137:199–203.

    Article  PubMed  CAS  Google Scholar 

  71. Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y (2002) Regulation of receptor activator of NF-kB ligand-induced osteoclastogenesis by endogenous interferon-β (INF-β) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs in IFN-β-inhibited osteoclast formation. J Biol Chem 277:27880–6.

    PubMed  CAS  Google Scholar 

  72. Helfrich MH, Nesbitt SA, Lakkakorpi PT, Barnes MJ, Bodary SC, Shankar G, et al. (1996) β1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19:317–28.

    Article  PubMed  CAS  Google Scholar 

  73. Holtrop ME, Raisz LG, Simmons HA (1974) The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 60:346–55.

    Article  PubMed  CAS  Google Scholar 

  74. Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R (1992) Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol 119:1003–13.

    Article  PubMed  CAS  Google Scholar 

  75. Horton MA (1997) The αvβ3 integrin “vitronectin receptor”. Int J Biochem Cell Biol 29:721–5.

    Article  PubMed  CAS  Google Scholar 

  76. Horton MA, Taylor ML, Arnett TR, Helfrich MH (1991) Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res 195:368–75.

    Article  PubMed  CAS  Google Scholar 

  77. Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, et al. (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366–72.

    PubMed  CAS  Google Scholar 

  78. Hruska KA, Rolnick F, Huskey M, Alvarez U, Cheresh D (1995) Engagement of the osteoclast integrin αvβ3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Ann NY Acad Sci 760:151–65.

    PubMed  CAS  Google Scholar 

  79. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–5.

    PubMed  CAS  Google Scholar 

  80. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–36.

    Article  PubMed  CAS  Google Scholar 

  81. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L, et al. (1997) Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 100:2476–85.

    PubMed  CAS  Google Scholar 

  82. Joazeiro CAP, Wing SS, Huang H-K, Leverson JD, Hunter T, Liu Y-C (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–12.

    Article  PubMed  CAS  Google Scholar 

  83. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, et al. (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–32.

    Article  PubMed  CAS  Google Scholar 

  84. Kallio DM, Garant PR, Minkin C (1972) Ultrastructural effects of calcitonin on osteoclasts in tissue culture. J Ultrastruct Res 39:205–16.

    Article  PubMed  CAS  Google Scholar 

  85. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–10.

    Article  PubMed  CAS  Google Scholar 

  86. Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J (1998) Functional consequences of the SHP-1 defect in motheaten viable mice: role of NF-κB. Cell Immunol 185:49–58.

    Article  PubMed  CAS  Google Scholar 

  87. King KL, D’Anza JJ, Bodary S, Pitti R, Siegel M, Lazarus RA, et al. (1994) Effects of kistrin on bone resorption in vitro and serum calcium in vivo. J Bone Miner Res 9:381–7.

    PubMed  CAS  Google Scholar 

  88. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA (1998) CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 140:961–72.

    Article  PubMed  CAS  Google Scholar 

  89. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–38.

    Article  PubMed  CAS  Google Scholar 

  90. Kobayashi N, Kadono Y, Naito A, Matumoto K, Yamamoto T, Tanaka S, et al. (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20:1271–80.

    Article  PubMed  CAS  Google Scholar 

  91. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–15.

    Article  PubMed  CAS  Google Scholar 

  92. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al. (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–63.

    Article  PubMed  CAS  Google Scholar 

  93. Krueger NX, Streuli M, Saito H (1990) Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 9:3241–52.

    PubMed  CAS  Google Scholar 

  94. Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T, et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–76.

    Article  PubMed  CAS  Google Scholar 

  95. Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT (1999) Stable association of PYK2 and p130Cas in osteoclasts and their co-localization in the sealing zone. J Biol Chem 274:4900–7.

    Article  PubMed  CAS  Google Scholar 

  96. Lakkakorpi PT, Nakamura I, Young M, Lipfert L, Rodan GA, Duong LT (2001) Abnormal localisation and hyperclustering of αvβ3 integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J Cell Sci 114:149–60.

    PubMed  CAS  Google Scholar 

  97. Lakkakorpi PT, Vaananen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6:817–26.

    Article  PubMed  CAS  Google Scholar 

  98. Lakkakorpi PT, Wesolowski G, Zimolo Z, Rodan GA, Rodan SB (1997) Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res 237:296–306.

    Article  PubMed  CAS  Google Scholar 

  99. Lee PSW, Wang Y, Dominguez MG, Yeung Y-G, Murphy MA, Bowtell DDL, et al. (1999) The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J 18:3616–28.

    PubMed  CAS  Google Scholar 

  100. Lee SW, Han SI, Kim HH, Lee ZH (2002) TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-κB. J Biochem Mol Biol 35:371–6.

    PubMed  Google Scholar 

  101. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, et al. (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–40.

    Article  PubMed  CAS  Google Scholar 

  102. Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, et al. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–71.

    PubMed  CAS  Google Scholar 

  103. Li L, Dixon JE (2000) Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin Immunol 12:75–84.

    Article  PubMed  CAS  Google Scholar 

  104. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, et al. (2002) p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143:3105–13.

    PubMed  CAS  Google Scholar 

  105. Li Y-P, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–51.

    PubMed  CAS  Google Scholar 

  106. Lomaga MA, Yeh W-C, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–24.

    PubMed  CAS  Google Scholar 

  107. Lorenz U, Ravichandran KS, Burakoff SJ, Neel BG (1996) Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc Natl Acad Sci USA 93:9624–9.

    PubMed  CAS  Google Scholar 

  108. Lowell CA, Niwa M, Soriano P, Varmus HE (1996) Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780–92.

    PubMed  CAS  Google Scholar 

  109. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. (2001) Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142:4047–54.

    Article  PubMed  CAS  Google Scholar 

  110. Mansky KC, Sankar U, Han J, Ostrowski MC (2002) Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-κB ligand signaling. J Biol Chem 277:11077–83.

    Article  PubMed  CAS  Google Scholar 

  111. Masarachia P, Yamamoto M, Leu CT, Rodan G, Duong L (1998) Histomorphometric evidence for echistatin inhibition of bone resorption in mice with secondary hyperparathyroidism. Endocrinology 139:1401–10.

    Article  PubMed  CAS  Google Scholar 

  112. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL). J Biol Chem 275:31155–61.

    Article  PubMed  CAS  Google Scholar 

  113. Matthews RJ, Bowne DB, Flores E, Thomas ML (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12:2396–405.

    PubMed  CAS  Google Scholar 

  114. Mauro LJ, Olmsted EA, Davis AR, Dixon JE (1996) Parathyroid hormone regulates the expression of the receptor protein tyrosine phosphatase, OST-PTP, in rat osteoblast-like cells. Endocrinology 137:925–33.

    Article  PubMed  CAS  Google Scholar 

  115. Mauro LJ, Olmsted EA, Skrobacz BM, Mourey RJ, Davis AR, Dixon JE (1994) Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem 269:30659–67.

    PubMed  CAS  Google Scholar 

  116. McHugh KP, Hodivala-Dilke K, Zheng M-H, Namba N, Lam J, Novack D, et al. (2000) Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–40.

    PubMed  CAS  Google Scholar 

  117. Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, et al. (2000) Reciprocal role of ERK and NF-κB pathways in survival and activation of osteoclasts. J Cell Biol 148:333–42.

    Article  PubMed  CAS  Google Scholar 

  118. Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160:709–18.

    Article  PubMed  CAS  Google Scholar 

  119. Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, et al. (2002) Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 22:992–1000.

    Article  PubMed  CAS  Google Scholar 

  120. Moller NPH, Moller KB, Lammers R, Kharitonenkov A, Hoppe E, Wiberg FC, et al. (1995) Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases α and ɛ. J Biol Chem 270:23126–31.

    PubMed  CAS  Google Scholar 

  121. Nakamura I, Jimi E, Duong LT, Sasaki T, Takahashi N, Rodan GA, et al. (1998) Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J Biol Chem 273:11144–9.

    PubMed  CAS  Google Scholar 

  122. Nakamura I, Lipfert L, Rodan GA, Duong LT (2001) Convergence of αvβ3 integrin-and macrophage colony stimulating factor-mediated signals on phospholipase Cγ in prefusion osteoclasts. J Cell Biol 152:361–73.

    Article  PubMed  CAS  Google Scholar 

  123. Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, et al. (1999) Role of αvβ3 integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 112:3985–93.

    PubMed  CAS  Google Scholar 

  124. Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T (1996) Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res 11:1873–9.

    PubMed  CAS  Google Scholar 

  125. Nakamura I, Takahashi N, Sasaki T, Tanaka S, Udagawa N, Murakami H, et al. (1995) Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett 361:79–84.

    Article  PubMed  CAS  Google Scholar 

  126. Nakamura I, Tanaka H, Rodan GA, Duong LT (1998) Echistatin inhibits the migration of murine prefusion osteoclasts and the formation of multinucleated osteoclast-like cells. Endocrinology 139:5182–93.

    Article  PubMed  CAS  Google Scholar 

  127. Nakamura K, Mizuno Y, Kikuchi K (1996) Molecular cloning of a novel cytoplasmic protein tyrosine phosphatase PTP ɛ. Biochem Biophys Res Commun 218:726–32.

    PubMed  CAS  Google Scholar 

  128. Naro F, Perez M, Migliaccio S, Galson DL, Orcel P, Teti A, et al. (1998) Phospholipase D-and protein kinase C isoenzyme-dependent signal transduction pathways activated by the calcitonin receptor. Endocrinology 139:3241–8.

    Article  PubMed  CAS  Google Scholar 

  129. Nesbitt S, Nesbit A, Helfrich M, Horton M (1993) Biochemical characterization of human osteoclast integrins. Osteoclasts express αvβ3, α2β1, and αvβ1 integrins. J Biol Chem 268:16737–45.

    PubMed  CAS  Google Scholar 

  130. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–9.

    Article  PubMed  CAS  Google Scholar 

  131. Ota J, Sato K, Kimura F, Wakimoto N, Nakamura Y, Nagata N, et al. (2000) Association of Cbl with Fms and p85 in response to macrophage colony-stimulating factor. FEBS Lett 466:96–100.

    Article  PubMed  CAS  Google Scholar 

  132. Palacio S, Felix R (2001) The role of phosphoinositide 3-kinase in spreading osteoclasts induced by colony-stimulating factor-1. Eur J Endocrinol 144:431–40.

    Article  PubMed  CAS  Google Scholar 

  133. Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, et al. (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–61.

    PubMed  CAS  Google Scholar 

  134. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, et al. (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–62.

    Article  PubMed  CAS  Google Scholar 

  135. Paniccia R, Riccioni T, Zani BM, Zigrino P, Scotlandi K, Teti A (1995) Calcitonin down-regulates immediate cell signals induced in human osteoclast-like cells by the bone sialoprotein-IIA fragment through a postintegrin receptor mechanism. Endocrinology 136:1177–86.

    Article  PubMed  CAS  Google Scholar 

  136. Plutzky J, Neel BG, Rosenberg RD (1992) Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci USA 89:1123–7.

    PubMed  CAS  Google Scholar 

  137. Plutzky J, Neel BG, Rosenberg RD, Eddy RL, Byers MG, Jani-Sait S, et al. (1992) Chromosomal localization of an SH2-containing tyrosine phosphatase (PTPN6). Genomics 13:869–72.

    Article  PubMed  CAS  Google Scholar 

  138. Quinn JMW, Elliott J, Gillespie MT, Martin TJ (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139:4424–7.

    PubMed  CAS  Google Scholar 

  139. Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J (2001) The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone 28:513–23.

    Article  PubMed  CAS  Google Scholar 

  140. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, et al. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–8.

    Article  PubMed  CAS  Google Scholar 

  141. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–3.

    Article  PubMed  CAS  Google Scholar 

  142. Sanjay A, Horne WC, Baron R (2001) The Cbl family: ubiquitin ligases regulating signaling by tyrosine kinases. Science’s STKE. http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/110/pe40.

    Google Scholar 

  143. Sanjay A, Houghton A, Neff L, Didomenico E, Bardelay C, Antoine E, et al. (2001) Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152:181–95.

    Article  PubMed  CAS  Google Scholar 

  144. Sato M, Sardana MK, Grasser WA, Garsky VM, Murray JM, Gould RJ (1990) Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol 111:1713–23.

    PubMed  CAS  Google Scholar 

  145. Schlaepfer DD, Broome MA, Hunter T (1997) Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol 17:1702–13.

    PubMed  CAS  Google Scholar 

  146. Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–378.

    PubMed  CAS  Google Scholar 

  147. Schlessinger J (2000) New roles for Src kinases in control of cell survival and angiogenesis. Cell 100:293–6.

    Article  PubMed  CAS  Google Scholar 

  148. Schwartzberg PL, Xing L, Hoffmann O, Lowell CA, Garrett L, Boyce BF, et al. (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src -/- mutant mice. Genes Dev 11:2835–44.

    PubMed  CAS  Google Scholar 

  149. Scimeca JC, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, et al. (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26:207–13.

    Article  PubMed  CAS  Google Scholar 

  150. Shaw LM, Rabinovitz I, Wang HH-F, Toker A, Mercurio AM (1997) Activation of phosphoinositide 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell 91:949–60.

    Article  PubMed  CAS  Google Scholar 

  151. Shen S-H, Bastien L, Posner BI, Chretien P (1991) A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352:736–9.

    Article  PubMed  CAS  Google Scholar 

  152. Shui C, Riggs BL, Khosla S (2002) The Immunosuppressant rapamycin, alone or with transforming growth factor-β, enhances osteoclast differentiation of RAW264.7 monocyte-macrophage cells in the presence of RANK-ligand. Calcif Tissue Int 71:437–46.

    Article  PubMed  CAS  Google Scholar 

  153. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, et al. (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73:1445–54.

    Article  PubMed  CAS  Google Scholar 

  154. Shultz LD, Sidman CL (1987) Genetically determined murine models of immunodeficiency. Annu Rev Immunol 5:367–403.

    Article  PubMed  CAS  Google Scholar 

  155. Shyu J-F, Inoue D, Baron R, Horne WC (1996) The deletion of 14 amino acids in the seventh transmembrane domain of a naturally occurring calcitonin receptor isoform alters ligand binding and selectively abolishes coupling to phospholipase C. J Biol Chem 271:31127–34.

    PubMed  CAS  Google Scholar 

  156. Shyu J-F, Zhang Z, Hernandez-Lagunas L, Camerino C, Chen Y, Inoue D, et al. (1999) Protein kinase C antagonizes pertussis-toxin-sensitive coupling of the calcitonin receptor to adenylyl cyclase. Eur J Biochem 262:95–101.

    Article  PubMed  CAS  Google Scholar 

  157. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang M-S, Luthy R, et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–19.

    Article  PubMed  CAS  Google Scholar 

  158. Sims NA, Aoki K, Bogdanovich Z, Maragh M, Okigaki M, Logan S, et al. (1999) Impaired osteoclast function in Pyk2 knockout mice and cumulative effects in Pyk2/Src double knockout. J Bone Miner Res 14(Suppl. 1):S183.

    Google Scholar 

  159. Sly WS, Hewett-Emmett D, Whyte MP, Yu Y-S, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–6.

    PubMed  CAS  Google Scholar 

  160. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702.

    Article  PubMed  CAS  Google Scholar 

  161. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–57.

    Article  PubMed  CAS  Google Scholar 

  162. Suhr SM, Pamula S, Baylink DJ, Lau K-HW (2001) Antisense oligodeoxynucleotide evidence that a unique osteoclastic protein-tyrosine phosphatase is essential for osteoclastic resorption. J Bone Miner Res 16:1795–1803.

    PubMed  CAS  Google Scholar 

  163. Sully V, Pownall S, Vincan E, Bassal S, Borowski AH, Hart PH, et al. (2001) Functional abnormalities in protein tyrosine phosphatase ɛ-deficient macrophages. Biochem Biophys Res Commun 286:184–8.

    Article  PubMed  CAS  Google Scholar 

  164. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416:744–9.

    Article  PubMed  CAS  Google Scholar 

  165. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408:600–5.

    PubMed  CAS  Google Scholar 

  166. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, et al. (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–9.

    Article  PubMed  CAS  Google Scholar 

  167. Tanaka S, Amling M, Neff L, Peyman A, Uhlmann E, Levy JB, et al. (1996) c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383:528–31.

    Article  PubMed  CAS  Google Scholar 

  168. Tanaka S, Neff L, Baron R, Levy JB (1995) Tyrosine phosphorylation and translocation of the c-Cbl protein after activation of tyrosine kinase signaling pathways. J Biol Chem 270:14347–51.

    PubMed  CAS  Google Scholar 

  169. Tanuma N, Nakamura K, Kikuchi K (1999) Distinct promoters control transmembrane and cytosolic protein tyrosine phosphatase ɛ expression during macrophage differentiation. Eur J Biochem 259:46–54.

    Article  PubMed  CAS  Google Scholar 

  170. Tanuma N, Nakamura K, Shima H, Kikuchi K (2000) Protein-tyrosine phosphatase PTPɛC inhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 275:28216–21.

    PubMed  CAS  Google Scholar 

  171. Tanuma N, Shima H, Nakamura K, Kikuchi K (2001) Protein tyrosine phosphatase ɛC selectively inhibits interleukin-6-and interleukin-10-induced JAK-STAT signaling. Blood 98:3030–4.

    Article  PubMed  CAS  Google Scholar 

  172. Tanuma N, Shima H, Shimada S, Kikuchi K (2003) Reduced tumorigenicity of murine leukemia cells expressing protein-tyrosine phosphatase, PTPɛC. Oncogene 22:1758–62.

    Article  PubMed  CAS  Google Scholar 

  173. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–8.

    Article  PubMed  CAS  Google Scholar 

  174. Thien CBF, Langdon WY (2001) Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2:294–305.

    Article  PubMed  CAS  Google Scholar 

  175. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu. Rev Cell Dev Biol 13:513–609.

    Article  PubMed  CAS  Google Scholar 

  176. Toledano-Katchalski H, Kraut J, Sines T, Granot-Attas S, Shohat G, Gil-Henn H, et al. (2003) Protein tyrosine phosphatase ɛ inhibits signaling by mitogen-activated protein kinases. Mol Cancer Res 1:541–50.

    PubMed  CAS  Google Scholar 

  177. Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, et al. (1995) Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem 270:21277–84.

    PubMed  CAS  Google Scholar 

  178. Tonks NK, Neel BG (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13:182–95.

    Article  PubMed  CAS  Google Scholar 

  179. Umeda S, Beamer WG, Takagi K, Naito M, Hayashi S-I, Yonemitsu H, et al. (1999) Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol 155:223–33.

    PubMed  CAS  Google Scholar 

  180. Vaananen HK, Karhukorpi EK, Sundquist K, Roininen I, Hentunen T, Tuukkanen J, et al. (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled border of osteoclasts. J Cell Biol 111:1305–11.

    Article  PubMed  CAS  Google Scholar 

  181. Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–81.

    PubMed  CAS  Google Scholar 

  182. Vuori K, Hirai H, Aizawa S, Ruoslahti E (1996) Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol Cell Biol 16:2606–13.

    PubMed  CAS  Google Scholar 

  183. Wabakken T, Hauge H, Finne EF, Wiedlocha A, Aasheim H (2002) Expression of human protein tyrosine phosphatase epsilon in leucocytes: a potential ERK pathway-regulating phosphatase. Scand J Immunol 56:195–203.

    PubMed  CAS  Google Scholar 

  184. Wei S, Wang MW-H, Teitelbaum SL, Ross FP (2002) Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and mitogen-activated protein kinase signaling. J Biol Chem 277:6622–30.

    PubMed  CAS  Google Scholar 

  185. Weinreb M, Halperin D (1998) Rat osteoclast precursors in vivo express a vitronectin receptor and a chloride-bicarbonate exchanger. Connect Tissue Res 37:177–82.

    PubMed  CAS  Google Scholar 

  186. Wennerberg K, Lohikangas L, Gullberg D, Pfaff M, Johansson S, Fassler R (1996) β1 integrin-dependent and-independent polymerization of fibronectin. J Cell Biol 132:227–38.

    Article  PubMed  CAS  Google Scholar 

  187. Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ (1995) Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81:41–51.

    Article  PubMed  CAS  Google Scholar 

  188. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, et al. (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4:1041–9.

    Article  PubMed  CAS  Google Scholar 

  189. Wu C, Hughes PE, Ginsberg MH, McDonald JA (1996) Identification of a new biological function for the integrin αvβ3: initiation of fibronectin matrix assembly. Cell Adhes Commun 4:149–58.

    Article  PubMed  CAS  Google Scholar 

  190. Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, et al. (1990) Generation of collagenase-resistant collagen by site-directed mutagenesis of murine proα1(I) collagen gene. Proc Natl Acad Sci USA 87:5888–92.

    PubMed  CAS  Google Scholar 

  191. Wu L-W, Baylink DJ, Lau K-H (1996) Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem J 316:515–23.

    PubMed  CAS  Google Scholar 

  192. Xing L, Bushnell TP, Carlson L, Tai Z, Tondravi M, Siebenlist U, et al. (2002) NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK-and cytokine-mediated osteoclastogenesis. J Bone Miner Res 17:1200–10.

    PubMed  CAS  Google Scholar 

  193. Yamamoto A, Miyazaki T, Kadono Y, Takayanagi H, Miura T, Nishina H, et al. (2002) Possible involvement of IκB kinase 2 and MKK7 in osteoclastogenesis induced by receptor activator of nuclear factor κB ligand. J Bone Miner Res 17:612–21.

    PubMed  CAS  Google Scholar 

  194. Yamamoto M, Fisher JE, Gentile M, Seedor JG, Leu C-T, Rodan SB, et al. (1998) The integrin ligand echistatin prevents bone loss in ovariectomized mice and rats. Endocrinology 139:1411–19.

    PubMed  CAS  Google Scholar 

  195. Yan T, Riggs BL, Boyle WJ, Khosla S (2001) Regulation of osteoclastogenesis and RANK expression by TGFβ1. J Cell Biochem 83:320–5.

    Article  PubMed  CAS  Google Scholar 

  196. Yi T, Ihle JN (1993) Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol Cell Biol 13:3350–8.

    PubMed  CAS  Google Scholar 

  197. Yi T, Mui AL, Krystal G, Ihle JN (1993) Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol 13:7577–86.

    PubMed  CAS  Google Scholar 

  198. Yi TL, Cleveland JL, Ihle JN (1992) Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12–p13. Mol Cell Biol 12:836–46.

    PubMed  CAS  Google Scholar 

  199. Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC, Zhang H, et al. (1999) Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol. Chem 274:31707–12.

    Article  PubMed  CAS  Google Scholar 

  200. Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH (1998) SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 273:3687–9364.

    PubMed  CAS  Google Scholar 

  201. Zaidi M, Datta HK, Moonga BS, MacIntyre I (1990) Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol 126:473–81.

    Article  PubMed  CAS  Google Scholar 

  202. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, et al. (1999) Focal adhesion kinase promotes phospholipase C-γ1 activity. Proc Natl Acad Sci USA 96:9021–6.

    PubMed  CAS  Google Scholar 

  203. Zhang Z, Baron R, Horne WC (2000) Integrin engagement, the actin cytoskeleton, and c-Src are required for the calcitonin-induced tyrosine phosphorylation of paxillin and HEF1, but not for calcitonin-induced Erk1/2 phosphorylation. J Biol Chem 275:37219–23.

    PubMed  CAS  Google Scholar 

  204. Zhang Z, Hernandez-Lagunas L, Horne WC, Baron R (1999) Cytoskeleton-dependent tyrosine phosphorylation of the maily member HEF1 downstream of the G protein-couopled calcitonin receptor. Calcitonin induces the association of HEF1, paxillin, and focal adhesion of kinase. J Biol Chem 274:25093–8.

    PubMed  CAS  Google Scholar 

  205. Zimolo Z, Weolowski G, Tanaka H, Hyman JL, Hoyer JR, Rodan GA (1994) Soluble αvβ3-integrin ligands raise [Ca2+]I in rat osteoclasts and mouse-derived osteoclast-like cells. Am J Physiol 266:C376–81.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Baron, R., Horne, W.C. (2005). Regulation of Osteoclast Activity. In: Bronner, F., Farach-Carson, M.C., Rubin, J. (eds) Bone Resorption. Topics in Bone Biology, vol 2. Springer, London. https://doi.org/10.1007/1-84628-016-8_3

Download citation

  • DOI: https://doi.org/10.1007/1-84628-016-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-812-1

  • Online ISBN: 978-1-84628-016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics