Skip to main content

Gene Therapy for Prostate Cancer

  • Chapter
Urological Cancers

Conclusion

The main limiting factors for the development of an effective gene therapy are efficiency of gene transfer, selectivity of tumor targeting, and the immunogenic properties of the vectors as well as general safety considerations. The findings of the early clinical trials of gene therapy have been promising, and results of several ongoing clinical trials are awaited. More recent trials have focused on combining gene therapy with conventional hormonal, chemotherapeutic, and radiation strategies in an attempt to overcome such problems as cellular heterogeneity and tumor resistance.

The expanding field of genomics provides an exciting new resource for the design of prostate-specific gene therapy strategies. The obstacles to the development of gene-based human therapeutics are significant but the rewards are great. Recent developments in molecular biology and virus delivery together with the ability to individualize molecular profiles point to a promising future for gene therapy for prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Department of Health. London: HMSO, 1996.

    Google Scholar 

  2. Brawley OW, Giovannucci E, Kramer BS. Epidemiology of Prostate Cancer. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  3. Kay MA, Holterman AX, Meuse L, et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995;11(2):191–197.

    Article  PubMed  CAS  Google Scholar 

  4. Dai Y, Schwarz EM, Gu D, et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995;92(5):1401–1405.

    Article  PubMed  CAS  Google Scholar 

  5. Nakatani T, Kuriyama S, Tominaga K, et al. Assessment of efficiency and safety of adenovirus mediated gene transfer into normal and damaged murine livers. Gut 2000;47(4):563–570.

    Article  PubMed  CAS  Google Scholar 

  6. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001;12(8):883–892.

    Article  PubMed  CAS  Google Scholar 

  7. Cotten M, Wagner E, Zatloukal K, et al. High-efficiency receptor-mediated delivery of small and large 48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci USA 1992;89(13):6094–6098.

    Article  PubMed  CAS  Google Scholar 

  8. Heidenberg HB, Sesterhenn IA, Gaddipati JP, et al. Alteration of the tumor suppressor gene p53 in a high fraction of hormone refractory prostate cancer. J Urol 1995;154(2 pt 1):414–421.

    Article  PubMed  CAS  Google Scholar 

  9. Asgari K, Sesterhenn IA, McLeod DG, et al. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer 1997;71(3):377–382.

    Article  PubMed  CAS  Google Scholar 

  10. Ko SC, Gotoh A, Thalmann GN, et al. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model. Hum Gene Ther 1996;7(14):1683–1691.

    PubMed  CAS  Google Scholar 

  11. Gotoh A, Kao C, Ko SC, et al. Cytotoxic effects of recombinant adenovirus p53 and cell cycle regulator genes (p21 WAF1/CIP1 and p16CDKN4) in human prostate cancers. J Urol 1997;158(2):636–641.

    Article  PubMed  CAS  Google Scholar 

  12. Eastham JA, Hall SJ, Sehgal I, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res 1995;55(22):5151–5155.

    PubMed  CAS  Google Scholar 

  13. Steiner MS, Zhang X, Wang Y, Lu Y. Growth inhibition of prostate cancer by an adenovirus expressing a novel tumor suppressor gene, pHyde. Cancer Res 2000;60(16):4419–4425.

    PubMed  CAS  Google Scholar 

  14. Steiner MS, Anthony CT, Lu Y, Holt JT. Antisense c-myc retroviral vector suppresses established human prostate cancer. Hum Gene Ther 1998;9(5):747–755.

    PubMed  CAS  Google Scholar 

  15. McDonnell TJ, Troncoso P, Brisbay SM, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992;52(24):6940–6944.

    PubMed  CAS  Google Scholar 

  16. Dorai T, Olsson CA, Katz AE, Buttyan R. Development of a hammerhead ribozyme against bcl-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer. Prostate 1997;32(4):246–258.

    Article  PubMed  CAS  Google Scholar 

  17. Marcelli M, Cunningham GR, Walkup M, et al. Signaling pathway activated during apoptosis of the prostate cancer cell line LNCaP: overexpression of caspase-7 as a new gene therapy strategy for prostate cancer. Cancer Res 1999;59(2):382–390.

    PubMed  CAS  Google Scholar 

  18. Godbey WT, Atala A. Directed apoptosis in Cox-2-overexpressing cancer cells through expression-targeted gene delivery. Gene Ther 2003;10(17):1519–27.

    Article  PubMed  CAS  Google Scholar 

  19. Blades RA, Keating PJ, McWilliam LJ, George NJ, Stern PL. Loss of HLA class I expression in prostate cancer: implications for immunotherapy. Urology 1995;46(5):681–686; discussion 686–687.

    Article  PubMed  CAS  Google Scholar 

  20. Pinthus JH, Waks T, Kaufman-Francis K, et al. Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes. Cancer Res 2003;63(10):2470–2476.

    PubMed  CAS  Google Scholar 

  21. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993;90(8):3539–3543.

    Article  PubMed  CAS  Google Scholar 

  22. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999;59(20):5160–5168.

    PubMed  CAS  Google Scholar 

  23. Steiner MS, Gingrich JR. Gene therapy for prostate cancer: where are we now? J Urol 2000;164(4):1121–1136.

    Article  PubMed  CAS  Google Scholar 

  24. Pantuck AJ, Zisman A, Belldegrun AS. Gene therapy for prostate cancer at the University of California, Los Angeles: preliminary results and future directions. World J Urol 2000;18(2):143–147.

    Article  PubMed  CAS  Google Scholar 

  25. Kim JJ, Trivedi NN, Wilson DM, et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene 1998;17(24):3125–3135.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson TC. In situ gene therapy for prostate cancer. Oncol Res 1999;11(1):1–8.

    PubMed  CAS  Google Scholar 

  27. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999;10(7):1239–1249.

    Article  PubMed  CAS  Google Scholar 

  28. Singhal S, Kaiser LR. Cancer chemotherapy using suicide genes. Surg Oncol Clin North Am 1998;7(3):505–536.

    CAS  Google Scholar 

  29. Djeha AH, Thomson TA, Leung H, et al. Combined adenovirus-mediated nitroreductase gene delivery and CB1954 treatment: a well-tolerated therapy for established solid tumors. Mol Ther 2001;3(2):233–240.

    Article  PubMed  CAS  Google Scholar 

  30. Chhikara M, Huang H, Vlachaki MT, et al. Enhanced therapeutic effect of HSV-tk+GCV gene therapy and ionizing radiation for prostate cancer. Mol Ther 2001;3(4):536–542.

    Article  PubMed  CAS  Google Scholar 

  31. Teh BS, Aguilar-Cordova E, Kernen K, et al. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer—a preliminary report. Int J Radiat Oncol Biol Phys 2001;51(3):605–613.

    Article  PubMed  CAS  Google Scholar 

  32. Teh BS, Aguilar-Cordova E, Aguilar L, et al. Late toxicity of a phase I/II trial evaluating combined radiotherapy and in-situ gene-therapy with or without hormonal therapy in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 2003;57(2 suppl):S275.

    Article  Google Scholar 

  33. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002;62(17):4968–4976.

    PubMed  CAS  Google Scholar 

  34. Freytag SO, Stricker H, Pegg J, et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate-to high-risk prostate cancer. Cancer Res 2003;63(21):7497–7506.

    PubMed  CAS  Google Scholar 

  35. Oyama M, Ohigashi T, Hoshi M, et al. Oncolytic viral therapy for human prostate cancer by conditionally replicating herpes simplex virus 1 vector G207. Jpn J Cancer Res 2000;91(12):1339–1344.

    PubMed  CAS  Google Scholar 

  36. Rodriguez R, Schuur ER, Lim HY, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997;57(13):2559–2563.

    PubMed  CAS  Google Scholar 

  37. DeWeese TL, van der Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001;61(20):7464–7472.

    PubMed  CAS  Google Scholar 

  38. Chen Y, DeWeese T, Dilley J, et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001;61(14):5453–5460.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mazhar, D., Gillmore, R. (2005). Gene Therapy for Prostate Cancer. In: Waxman, J. (eds) Urological Cancers. Springer, London. https://doi.org/10.1007/1-84628-015-X_11

Download citation

  • DOI: https://doi.org/10.1007/1-84628-015-X_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-911-1

  • Online ISBN: 978-1-84628-015-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics