Skip to main content

Contribution of Tissue Factor to the Pathogenesis of Thrombosis in Patients with Antiphospholipid Syndrome

  • Chapter
  • 724 Accesses

Conclusions

Increased TF expression may contribute to thrombosis in patients with APS. This effect might ultimately depend on antibody engagement of PL binding proteins on the monocyte and the EC surface, leading to signal transduction and altered cell activity. Understanding the intracellular mechanism(s) of aPL mediated TF activation may help to establish new therapeutic approaches to revert the prothrombotic state observed in APS patients.

Keywords

  • Vascular Endothelial Growth Factor
  • Tissue Factor
  • Tissue Factor Expression
  • Tissue Factor mRNA
  • Tissue Factor Gene

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson WA, Garavi AE, Koike T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome. Arthritis Rheum 1999;42:1309–1311.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Roubey RAS. Immunology of the antiphospholipid antibody syndrome. Arthritis Rheum 1996;39:1444–1454.

    PubMed  CAS  Google Scholar 

  3. Amengual O, Atsumi T, Khamashta MA. Tissue Factor in antiphospholipid syndrome: shifting the focus from coagulation to endothelium. Rheumatology 2003;42:1029–1031.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Ieko M, Ichikawa K, Tripplett D, et al. β2-glycoprotein I is necessary to inhibit protein C activity by monoclonal anticardiolipin antibodies. Arthritis Rheum 1999;42:167–174.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Takeuchi R, Atsumi T, Ieko M, et al. Coagulation and fibrinolytic activities in two siblings with β2-glycoprotein I deficiency. Blood 2000;96:1594–1595.

    PubMed  CAS  Google Scholar 

  6. Permpikul P, Rao LVM, Rapaport SI. Functional and binding studies of the roles of prothrombin and β2-glycoprotein I in the expression of lupus anticoagulant activity. Blood 1994;83:2878–2892.

    PubMed  CAS  Google Scholar 

  7. Simmelink MJA, Horbach DA, Derksen RHWM, et al. Complexes of anti-prothrombin antibodies and prothrombin cause lupus anticoagulant activity by competing with the binding of clotting factors for catalytic phospholipids surfaces. Br J Haematol 2001;113:621–629.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Khamashta MA, Asherson RA. Hughes syndrome: antiphospholipid antibodies move closer to thrombosis in 1994. Br J Rheumatol 1995;34:493–494.

    PubMed  CAS  Google Scholar 

  9. Reverter J-C, Tassies D, Font J, et al., Effects of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis Rheum 1998;41:1420–1427.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Amengual O, Atsumi T, Khamashta MA, Hughes GRV. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost 1998;79:276–281.

    PubMed  CAS  Google Scholar 

  11. Nemerson Y, Gentry R. An ordered addition, essential activation model of the tissue factor pathway of coagulation: evidence for a conformational cage. Biochemistry 1986;25:4020–4033.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Nemerson Y. Tissue factor and hemostasis. Blood 1988;71:1–12.

    PubMed  CAS  Google Scholar 

  13. Rodgers GM. Hemostatic properties of normal and perturbed vascular cells. FASEB J 1988;2:116–123.

    PubMed  CAS  Google Scholar 

  14. Nemerson Y. The tissue factor pathway of blood coagulation. Semin Haematol 1992;29:170–176.

    CAS  Google Scholar 

  15. Weis JR, Pitas RE, Wilson BD, Rodgers GM. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J 1991;5:2459–2465.

    PubMed  CAS  Google Scholar 

  16. Gregory SA, Morrissey JH, Edgington TS. Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol Cell Biol 1989;9:2752–2755.

    PubMed  CAS  Google Scholar 

  17. Mackman N. Regulation of the tissue factor gene. FASEB J 1995;9:883–889.

    PubMed  CAS  Google Scholar 

  18. Courtney MA, Haidaris PJ, Marder VJ, Sporn LA. Tissue factor mRNA expression in the endothelium of an intact umbilical vein. Blood 1996;87:174–179.

    PubMed  CAS  Google Scholar 

  19. Cuadrado MJ, López-Pedrera Ch, Khamashta MA, et al. Thrombosis in primary antiphospholipid syndrome. A pivotal role for monocyte tissue factor expression. Arthritis Rheum 1997;40:834–841.

    PubMed  CAS  Google Scholar 

  20. Dobado-Berrios PM, Lopez-Pedrera Ch, Velasco F, et al. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost 1999;82:1578–1582.

    PubMed  CAS  Google Scholar 

  21. Dobado-Berrios PM, López-Pedrera Ch, Velasco F, et al. The role of tissue factor in the antiphospholipid syndrome. Arthritis Rheum 2001;44:2467–2476.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Kornberg A, Blank M, Kaufman S, Shoenfeld Y. Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies. J Immunol 1994;153:1328–1332.

    PubMed  CAS  Google Scholar 

  23. Conti F, Sorice M, Circella A, et al. Beta-2-glycoprotein I expression on monocytes is increased in anti-phospholipid antibody syndrome and correlates with tissue factor expression. Clin Exp Immunol 2003;132:509–516.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Arnout J. The pathogenesis of the antiphospholipid syndrome: a hypothesis based on parallelisms with heparin-induced thrombocytopenia. Thromb Haemost 1996;75:536–541.

    PubMed  CAS  Google Scholar 

  25. Pierangeli S, Espinola R, Liu X, Harris E, Salmon J. Identification of an Fc gamma receptor independent mechanism by which intravenous immunoglobin ameliorates antiphospholipid antibody-induced thrombogenic phenotype. Arthritis Rheum 2001;44:876–883.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Rand JH, Wu X-X, Andree HAM, et al. Antiphospholipid antibodies accelerate plasma coagulation by inhibiting annexin-V binding to phospholipids: a “lupus procoagulant” phenomenon. Blood 1998;92:1652–1660.

    PubMed  CAS  Google Scholar 

  27. Rand JH, Wu X-X, Andree HAM, et al. Pregnancy loss in the antiphospholipid syndrome: a possible thrombogenic mechanism. N Engl J Med 1997;337:154–160.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Zhou H, Roubey RAS. Annexin A2 and antiphospholipid-antibody induced upregulation of monocyte tissue factor. Arthritis Rheum 2002;46:S232.

    CrossRef  CAS  Google Scholar 

  29. Pierangeli SS, Ferrara DE, Harris EN, et al. Inhibitors of NFkB and p38 kinase abrogate TF up-regulation by anti-phospholipid antibodies. Thromb Haemost 2003.

    Google Scholar 

  30. Cuadrado MJ, Lopez-Pedrera Ch, Buendía P, et al. Regulation of NFkB activation in the antiphospholipid síndrome: involvement of ERK1/2 and p38 MAP kinase pathways. Arthritis Rheum 2004;33:S34.

    Google Scholar 

  31. Baddwin AS. The transcription factor NFkB and human disease. J Clin Invest 2001;107:3–6.

    CrossRef  Google Scholar 

  32. Chen J, Bierhaus A, Schiekofer S, et al. Tissue factor: a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost 2001;86:334–345.

    PubMed  CAS  Google Scholar 

  33. Williams FMK, Parmar K, Hughes GRV, et al. Systemic endothelial cell markers in primary antiphospholipid syndrome. Thromb Haemost 2000;84:742–746.

    PubMed  CAS  Google Scholar 

  34. Clauss N, Weich H, Breier G, et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996;271:17629–17634.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Cuadrado MJ, Buendia P, Lopez-Pedrera Ch, et al. Increased tissue factor expression in monocytes from patients with antiphospholipid syndrome depends on NFkB activation. Arthritis Rheum 2003;48:S322.

    Google Scholar 

  36. Blum S, Issbrüker K, Willuweit A, et al. An inhibitory role of the phosphatidylinositol 3-kinase-signaling pathway in vascular endothelial growth factor-induced tissue factor expression. J Biol Chem 2001;276:33428–33434.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Itaya H, Imaizumi T, Yoshida H, et al. Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide. Thromb Haemost 2001;85:171–176.

    PubMed  CAS  Google Scholar 

  38. Jung YD, Liu W, Reinmuth N, et al. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the p38 mitogen-activated protein kinase pathway. Angiogenesis 2001;4:155–162.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Khamashta MA, Cuadrado MJ, Mujic F, Taub NA, Hunt BJ, Hughes GRV. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995;332:993–997.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-β2 glycoprotein I) antibodies: effect on the pro-adhesive and pro-inflammatory phenotype. Arthritis Rheum 2001;44:2870–2878.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Undas A, Brummel KE, Musial J, Mann KG, Szceklik A. Simvastatin depresses blood clotting by inhibiting activation of prothrombin, factor V and factor XIII and by enhancing factor Va inactivation. Circulation 2001;103:2248–2257.

    PubMed  CAS  Google Scholar 

  42. Colli S, Eligni S, Lalli M, et al. Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol 1997;17:265–272.

    PubMed  CAS  Google Scholar 

  43. Ferro D, Basili S, Alessandri C, et al. Inhibition of tissue-factor-mediated thrombin generation by simvastatin. Atherosclerosis 2000;149:111–116.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

López-Pedrera, C., Velasco, F., Cuadrado, M.J. (2006). Contribution of Tissue Factor to the Pathogenesis of Thrombosis in Patients with Antiphospholipid Syndrome. In: Khamashta, M.A. (eds) Hughes Syndrome. Springer, London. https://doi.org/10.1007/1-84628-009-5_35

Download citation

  • DOI: https://doi.org/10.1007/1-84628-009-5_35

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-873-2

  • Online ISBN: 978-1-84628-009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics