Skip to main content

Mechanism of Thrombosis in Antiphospholipid Syndrome: Binding to Platelets

  • Chapter
  • 742 Accesses

Conclusion

Platelets are a potential target for circulating aPL that may cause antibody mediated thrombosis. In vitro studies performed in the aggregometer or in flowing conditions and the evaluation of platelet activation markers in vitro and in vivo in patients with the APS demonstrated the ability of aPL to interact with platelets and promote their function. The most reliable explanation for the prothrombotic action of aPL in platelets includes, first, previous platelet activation and the binding of them to platelet membrane phospholipid bound proteins, mainly β2-glycoprotein I. Then, in a second step, aPL may act activating platelets, via FcγRIIA or complement C5-9 formation. However, several points of this suggested mechanism of action of aPL on thrombus formation are not clearly established and further studies on the interaction between platelet and aPL are needed.

Keywords

  • Systemic Lupus Erythematosus
  • Platelet Activation
  • Lupus Anticoagulant
  • Anticardiolipin Antibody
  • Platelet Membrane

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes GRV, Harris EN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol 1986;13:486–489.

    PubMed  CAS  Google Scholar 

  2. Love PE, Santoro SA. Antiphospholipid antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders. Ann Intern Med 1990;112:682–698.

    PubMed  CAS  Google Scholar 

  3. Roubey RAS. Immunology of the antiphospholipid antibody syndrome. Arthritis Rheum 1996;39:1444–1454.

    PubMed  CAS  Google Scholar 

  4. Roubey RAS. Mechanisms of autoantibody-mediated thrombosis. Lupus 1998;7(suppl 2):S114–S119.

    PubMed  CAS  Google Scholar 

  5. Machin SJ. Platelets and antiphospholipid antibodies. Lupus 1996;5:386–387.

    PubMed  CAS  Google Scholar 

  6. Lin YL, Wang CT. Activation of human platelets by the rabbit anticardiolipin antibodies. Blood 1992;80:3135–3143.

    PubMed  CAS  Google Scholar 

  7. Wiener HM, Vardinon N, Yust I. Platelet antibody binding and spontaneous aggregation in 21 lupus anticoagulant patients. Vox Sang 1991;61:111–121.

    PubMed  CAS  Google Scholar 

  8. Arvieux J, Roussel B, Pouzol P, et al. Platelet activating properties of murine monoclonal antibodies to β2-glycoprotein I. Thromb Haemost 1993;70:336–341.

    PubMed  CAS  Google Scholar 

  9. Ford I, Urbaniak S, Greaves M. IgG from patients with antiphospholipid syndrome binds to platelets without induction of platelet activation. Br J Haematol 1998;102:841–849.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Ostfeld I, Dadosh-Goffer N, Borokowski S, et al. Lupus anticoagulant antibodies inhibit collagen-induced adhesion and aggregation of human platelets in vitro. J Clin Immunol 1992;12:415–423.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Campbell AL, Pierangeli SS, Wellhausen S, et al. Comparison of the effects of anticardiolipin antibodies from patients with the antiphospholipid syndrome and with syphilis on platelet activation. Thromb Haemost 1995;73:529–534.

    PubMed  CAS  Google Scholar 

  12. Ichikawa Y, Kobayashi N, Kawada T, et al. Reactivities of antiphospholipid antibodies to blood cells and their effect on platelet aggregations in vitro. Clin Exp Rheumatol 1990;8:461–465.

    PubMed  CAS  Google Scholar 

  13. Martinuzzo ME, Maclouf J, Carreras LO, et al. Antiphospholipid antibodies enhance thrombin-induced platelet activation and tromboxane fromation. Thromb Haemost 1993;70:667–671.

    PubMed  CAS  Google Scholar 

  14. Wiener MH, Burke M, Fried M, et al. Thromboagglutination by anticardiolipin antibody complex in the antiphospholipid syndrome. A possible mechanisms of immune-mediated thrombosis. Thromb Res 2001;103:193–199.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Escolar G, Font J, Reverter JC, et al. Plasma from systemic lupus erythematosus patients with antiphospholipid antibodies promotes platelet aggregation: studies in a perfusion system. Arterioscler Thromb 1992;12:196–200.

    PubMed  CAS  Google Scholar 

  16. Reverter JC, Tàssies D, Escolar G, et al. Effect of plasma from patients with primary antiphospholipid syndrome on platelet function in a collagen rich perfusion system. Thromb Haemost 1995;73:132–137.

    PubMed  CAS  Google Scholar 

  17. Reverter JC, Tàssies D, Font J, et al. Effect of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis Rheum 1998;41:1420–1427.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Font J, Espinosa G, Tassies D, et al. Effects of beta2-glycoprotein I and monoclonal anticardiolipin antibodies in platelet interaction with subendothelium under flow conditions. Arthritis Rheum 2002;46:3283–3289.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Lutters BCH, Derksen RHW, Tekelenburg WL, et al. Dimers of β2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J Biol Chem 2003;278:33831–33838.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Carreras LO, Defreyn G, Machin SJ, et al. Recurrent arterial thrombosis, repeated intrauterine death and “lupus” anticoagulant: detection of immunoglobulin interfering with prostacyclin formation. Lancet 1981;i:244–246.

    CrossRef  Google Scholar 

  21. Carreras LO, Vermylen JG, Deman R, et al. “Lupus” anticoagulant and thrombosis-possible role of inhibition of prostacyclin formation. Thromb Haemost 1982;48:28–40.

    Google Scholar 

  22. Lellouche F, Martinuzzo M, Said P, et al. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant. Blood 1991;78:2894–2899.

    PubMed  CAS  Google Scholar 

  23. Forastiero R, Martinuzzo M, Carreras LO, et al. Anti-β-2-glycoprotein I antibodies and platelet activation in patients with antiphospholipid antibodies: association with increased excretion of platelet-derived thromboxane urinary metabolites. Thromb Haemost 1998;79:42–45.

    PubMed  CAS  Google Scholar 

  24. Maclouf J, Lellouche F, Martinuzzo M, et al. Increased production of platelet derived thromboxane in patients with lupus anticoagulants. Agents Actions suppl 1992;37:27–33.

    PubMed  CAS  Google Scholar 

  25. Rustin MHA, Bull HA, Machin SJ. Effects of the lupus anticoagulant in patients with systemic lupus erythematosus on endothelial cell prostacyclin release and procoagulant activity. J Invest Dermatol 1988;90:744–748.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Opara R, Robbins DL, Ziboh VA. Cyclic-AMP agonists inhibit antiphospholipìd/beta2-glycoprotein I induced synthesis of human platelet thromboxane A2 in vitro. J Rheumatol 2003;30:55–59.

    PubMed  CAS  Google Scholar 

  27. Emmi L, Bergamini C, Spinelli A, et al. Possible pathogenetic role of activated platelets in the primary antiphospholipid syndrome involving the central nervous system. Ann N Y Acad Sci 1997;823:188–200.

    PubMed  CAS  Google Scholar 

  28. Fanelli A, Bergamini C, Rapi S, et al. Flow cytometric detection of circulating activated platelets in primary antiphospholipid syndrome. Correlation with thrombocytopenia and anticardiolipin antibodies. Lupus 1997;6:261–267.

    PubMed  CAS  Google Scholar 

  29. Joseph JE, Donohoe S, Harrison P, et al. Platelet activation and turnover in the primary antiphospholipid syndrome. Lupus 1998;7:333–340.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Joseph JE, Harrison P, Mackie IJ, et al. Increased circulation platelet-leucocyte complexes and platelet activation in patients with antophospholipic syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br J Haematol 2001;115:451–459.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Out HJ, de Groot P, van Vliet M, et al. Antibodies to platelets in patients with antiphospholipid antibodies. Blood 1991;77:2655–2659.

    PubMed  CAS  Google Scholar 

  32. Shechter Y, Tal Y, Greenberg A, et al. Platelet activation in patients with antiphospholipid syndrome. Blood Coag Fibrinol 1998;9:653–657.

    CAS  Google Scholar 

  33. Galli M, Grassi A, Barbui T. Platelet-derived microvesicles in the antiphospholipid syndrome. Thromb Haemost 1993;69:541.

    Google Scholar 

  34. Ekdahl KN, Bengtsson AA, Andersson J, et al. Thrombotic disease in systemic lupus erythematosus is associated with a maintained systemic platelet activation. Br J Haematol 2004;125:74–78.

    CrossRef  PubMed  Google Scholar 

  35. Specker C, Perniok A, Brauckmann U, et al. Detection of cerebral microemboli in APS-introducing a novel investigation method and implications of analogies with carotid artery disease. Lupus 1998;7(suppl 2):S75–S80.

    PubMed  Google Scholar 

  36. Galli M, Cortelazzo S, Viero P, et al. Interaction between platelets and lupus anticoagulant. Eur J Haematol 1988;41:88–94.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Shi W, Chong BH, Chesterman CN. β-2-glycoprotein is a requirement for anticardiolipin antibodies binding to activated platelets: differences with lupus anticoagulants. Blood 1993;81:1255–1262.

    PubMed  CAS  Google Scholar 

  38. Chong BH, Brighton TC, Chesterman CN. Antiphospholipid antibodies and platelets. Semin Thromb Hemost 1995;21:76–84.

    PubMed  CAS  Google Scholar 

  39. Bevers EM, Comfurius P, Dekkers DWC, et al. Regulatory mechanisms of transmembrane phospholipid distributions and pathophysiological implications of transbilayer lipid scrambling. Lupus 1998;7(suppl 2):S126–S131.

    PubMed  CAS  Google Scholar 

  40. Schroit AJ, Zwaal RFA. Transbilayer movement of phospholipid in red cell and platelet membranes. Biochim Biophys Acta 1991;1071:313–329.

    PubMed  CAS  Google Scholar 

  41. Sims PJ, Wiedmer T, Esmon CT, et al. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott’s syndrome: an isolated defect in procoagulant activity. J Biol Chem 1989;264:17049–17057.

    PubMed  CAS  Google Scholar 

  42. Khamashta MA, Harris EN, Gharavi AE, et al. Immune mediated mechanism for thrombosis: Antiphospholipid antibody binding to platelet membranes. Ann Rheum Dis 1988;47:849–854.

    PubMed  CAS  Google Scholar 

  43. Galli M, Bevers EM, Comfurius P, et al. Effect of antiphospholipid antibodies on procoagulant activity of activated platelets and platelet-derived microvesicles. Br J Haematol 1993;83:466–472.

    PubMed  CAS  Google Scholar 

  44. Galli M, Béguin S, Lindhout T, et al. Inhibition of phospholipid and platelet-dependent prothrombinase activity in the plasma of patients with lupus anticoagulant. Br J Haematol 1989;72:549–555.

    PubMed  CAS  Google Scholar 

  45. Galli M, Ruggeri L, Barbui T. Differential effects of anti-β-2-glycoprotein I and anti-prothrombin antibodies on the anticoagulant activity of activated protein C. Blood 1998;91:1999–2004.

    PubMed  CAS  Google Scholar 

  46. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990;335:1544–1547.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Matsuura E, Igarashi Y, Fujimoto M, et al. Anticardiolipin cofactors and diferential diagnoses of autoimmune diseases. Lancet 1990;336:177–178.

    CrossRef  PubMed  CAS  Google Scholar 

  48. McNeil HP, Simpson RJ, Chesterman CN, et al. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A 1990;87:4120–4124.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Munakata Y, Saito T, Matsuda K, et al. Detection of complement-fixing antiphospholipid antibodies in association with thrombosis. Thromb Haemost 2000;83:728–731.

    PubMed  CAS  Google Scholar 

  50. Wurm H. Beta 2-glycoprotein I (apolipoprotein H) interactions with phospholipid vesicles. Int J Biochem 1984;16:511–515.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Arnout J, Vermylen J. Mechanism of action of β-2-glycoprotein I-dependent lupus anticoagulants. Lupus 1998;7(suppl 2):S23–S28.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Hunt JE, Krilis S. The fifth domain of β-2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol 1994;152:653–659.

    PubMed  CAS  Google Scholar 

  53. Igarashi M, Matsuura E, Igarashi Y, et al. Human β-2-glycoprotein I as an anticardiolipin cofactor determined using deleted mutans expressed by a Baculovirus system. Blood 1996;87:3262–3270.

    PubMed  CAS  Google Scholar 

  54. Gushiken FC, Arnett FC, Ahn C, et al. Polymorphism of β2-glycoprotein I at codons 306 and 316 in patients with systemic lupus erythematosus and antiphospholipid syndrome. Arthritis Rheum 1999;42:1189–1193.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Gushiken FC, Arnett FC, Thiagarajan P. Primary antiphospholipid antibody syndrome with mutations in the phospholipid binding domain of beta (2)-glycoprotein I. Am J Hematol 2000;65:160–165.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Willems GM, Janssen MP, Pelsers MMAL, et al. Role of divalency in the high-affinity binding of anticardiolipin antibody-beta-2-glycoprotein I complexes to lipid membranes. Biochemistry 1996;35:13833–13842.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Roubey RAS, Eisenberg RA, Harper MF, et al. “Anti-cardiolipin” autoantibodies recognize β2-glycoprotein I in the absence of phospholipid: Importance of antigen density and bivalent binding. J Immunol 1995;154:954–960.

    PubMed  CAS  Google Scholar 

  58. Matsuura E, Igarashi Y, Yasuda T, et al. Anticardiolipin antibodies recognize β2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994;179:457–462.

    CrossRef  PubMed  CAS  Google Scholar 

  59. Wagenknecht DR, McIntyre JA. Changes in beta-2-glycoprotein I antigenicity induced by phospholipid binding. Thromb Haemost 1993;69:361–365.

    PubMed  CAS  Google Scholar 

  60. Arnout J, Wittelvrongel C, Vanrusselt M, et al. Beta-2-glycoprotein I dependent lupus anticoagulants form stable divalent antibody-beta-2-glycoprotein I complexes on phospholipid surfaces.

    Google Scholar 

  61. Thromb Haemost 1998;79:79–86.61. van de Winkel JGJ, Capel PJA. Human IgG Fc receptor heterogeneity. Immunol Today 1993;14:215–221.

    Google Scholar 

  62. Anderson CL, Chacko GW, Osborne JM, et al. The Fc receptor for immunoglobulin G (Fc gamma RII) on human platelets. Semin Thromb Hemost 1995;21:1–9.

    CrossRef  PubMed  CAS  Google Scholar 

  63. De Reys S, Blom C, Lepoudre B, et al. Human platelet aggregation by murine monoclonal antibodies is subtype-dependent. Blood 1993;81:1792–1800.

    PubMed  Google Scholar 

  64. Vermylen J, Hoylaerts MF, Arnout J. Antibody-mediated thrombosis. Thromb Haemost 1997;78:420–426.

    PubMed  CAS  Google Scholar 

  65. Warmerdam PAM, van de Winkel JGJ, Vlug A, et al. A single amino acid in the second Ig-like domain of the Fc gamma RII is critical for human IgG2 binding. J Immunol 1991;147:1338–1343.

    PubMed  CAS  Google Scholar 

  66. Arnout J. The pathogenesis of the antiphospholipid syndrome: a hypotesis based on parallelisms with heparin-induced thrombocytopenia. Thromb Haemost 1996;75:536–541.

    PubMed  CAS  Google Scholar 

  67. Khamashta MA, Cuadrado MJ, Mujic F, et al. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995;332:993–997.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Arvieux J, Roussel B, Ponard D, et al. IgG2 subclass restriction of anti beta-2-glycoprotein I antibodies in autoimmune patients. Clin Exp Immunol 1994;95:310–315.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Carlsson LE, Santoso S, Baurichter G, et al. Heparin-induced thrombocytopenia: new insights into the impact of the FcγRIIa-R-H131 polymorphism. Blood 1998;92:1526–1531.

    PubMed  CAS  Google Scholar 

  70. Atsumi T, Caliz R, Amengual O, et al. Fc gamma Receptor IIA H/R131 polymorphism in patients with the antiphospholipid syndrome. Thromb Haemost 1998;79:924–927.

    PubMed  CAS  Google Scholar 

  71. Karassa FB, Bijl M, Davies KA, et al. Role of the Fcγ receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis. Arthritis Rheum 2003;48:1930–1938.

    CrossRef  PubMed  CAS  Google Scholar 

  72. McCrae KR, Shattil SJ, Cines DB. Platelet activation induces increased Fc gamma receptor expression. J Immunol 1990;144:3920–3927.

    PubMed  CAS  Google Scholar 

  73. Jankowski M, Vreys I, Wittevrongel C, et al. Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood 2003;101:157–162.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Gharavi AE, Pierangeli SS, Gharavi EE, et al. Thrombogenic properties of antiphospholipid antibodies do not depend on their binding to β-2-glycoprotein I (β2GPI) alone. Lupus 1998;7:341–346.

    CrossRef  PubMed  CAS  Google Scholar 

  75. Nojima J, Suehisa E, Kuratsune H, et al. Platelet activation induced by combined effects of anticardiolipin and lupus anticoagulant IgG antibodies in patients with systemic lupus erythematosus. Thromb Haemost 1999;81:436–441.

    PubMed  CAS  Google Scholar 

  76. Shibata S, Sasaki T, Hirabayashi Y, et al. Risk factors in the pregnancy of patients with systemic lupus erythematosus: association of hypocomplementaemia with poor prognosis. Ann Rheum Dis 1992;51:619–623.

    PubMed  CAS  Google Scholar 

  77. Hess DC, Sheppard JC, Adams RJ. Increased immunoglobulin binding to cerebral endothelium in patients with antiphospholipid antibodies. Stroke 1993;24:994–999.

    PubMed  CAS  Google Scholar 

  78. Davis WD, Brey RL. Antiphospholipid antibodies and complement activation in patients with cerebral ischemia. Clin Exp Rheumatol 1992;10:455–460.

    PubMed  CAS  Google Scholar 

  79. Salmon JE, Girardi G, Holers VM. Complement activation as a mediator of antiphospholipid antibody induced pregnancy loss and thrombosis. Ann Rheum Dis 2002;61(suppl II):ii46–ii50.

    PubMed  CAS  Google Scholar 

  80. Rinder CS, Rinder HM, Smith BR, et al. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation. J Clin Invest 1995;96:1564–1572.

    CrossRef  PubMed  CAS  Google Scholar 

  81. Solum NO, Rubach-Dahlberg E, Pedersen TM, et al. Complement-mediated permeabilization of platelets by monoclonal antibodies to CD9: inhibition by leupeptin, and effects on the GPI-acting-binding protein system. Thromb Res 1994;75:437–452.

    CrossRef  PubMed  CAS  Google Scholar 

  82. Wiedmer T, Hall SE, Ortel TL, et al. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 1993;82:1192–1196.

    PubMed  CAS  Google Scholar 

  83. Santiago MB, Gaburo N, de Oliveira RM, et al. Complement activation by anticardiolipin antibodies. Ann Rheum Dis 1991;50:249–250.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Stewart MW, Etches WS, Gordon PA. Antiphospholipid antibody-dependent C5b-9 formation. Br J Haematol 1997;96:451–457.

    CrossRef  PubMed  CAS  Google Scholar 

  85. Chang CP, Zhao J, Wiedmer T, et al. Contribution of platelet microparticle formation and granule secretion to the transmembrane migration of phosphatidylserine. J Biol Chem 1993;268:7171–7178.

    PubMed  CAS  Google Scholar 

  86. Rock G, Chauhan K, Jamieson GA, et al. Anti-CD36 antibodies in patients with lupus anticoagulant and thrombotic complications. Br J Haematol 1994;88:878–880.

    PubMed  CAS  Google Scholar 

  87. Tokita S, Arai M, Yamamoto M, et al. Specific cross-reaction of IgG antiphospholipid antibody with platelet glycoprotein IIIA. Thromb Haemost 1996;75:168–174.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Reverter, JC., Tàssies, D. (2006). Mechanism of Thrombosis in Antiphospholipid Syndrome: Binding to Platelets. In: Khamashta, M.A. (eds) Hughes Syndrome. Springer, London. https://doi.org/10.1007/1-84628-009-5_32

Download citation

  • DOI: https://doi.org/10.1007/1-84628-009-5_32

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-873-2

  • Online ISBN: 978-1-84628-009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics