Skip to main content

Antiphospholipid Antibody-Induced Pregnancy Loss and Thrombosis

  • Chapter

Keywords

  • Classical Pathway
  • Mannose Binding Lectin
  • Membrane Attack Complex
  • Membrane Cofactor Protein
  • Decay Accelerate Factor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wassermann A, Neisser A, Bruck C. Eine serodiagnostiche Reaktion bei Syphilis. Deutsche Med Wochenschr 1906;32:745–746.

    CrossRef  Google Scholar 

  2. Pangborn MC. A new serologically active phospholipid from beef heart. Proc Soc Exp Biol Med 1941;48:484–486.

    CAS  Google Scholar 

  3. Asherson RA, et al. The “primary” antiphospholipid syndrome: major clinical and serological features. Medicine (Baltimore) 1989;68:366–374.

    CAS  Google Scholar 

  4. Lockshin MD. Antiphospholipid antibody and antiphospholipid antibody syndrome. Curr Opin Rheumatol 1991;3:797–802.

    PubMed  CAS  Google Scholar 

  5. Lockwood CJ, Rand JH. The immunobiology and obstetrical consequences of antiphospholipid antibodies. Obstet Gynecol Surv 1994;49:432–441.

    PubMed  CAS  Google Scholar 

  6. Sammaritano LR, Gharavi AE, Lockshin MD. Antiphospholipid antibody syndrome: immunologic and clinical aspects. Semin Arthritis Rheum 1990;20:81–96.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Shapiro SS. The lupus anticoagulant/antiphospholipid syndrome. Annu Rev Med 1996;47:533–553.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Del Papa N, et al. Endothelial cells as target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and induce endothelial activation. Arthritis Rheum 1997;40:551–561.

    PubMed  Google Scholar 

  9. Roubey RA. Tissue factor pathway and the antiphospholipid syndrome. J Autoimmun 2000;15:217–220.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Simantov R, et al. Activation of cultured vascular endothelial cells by antiphospholipid antibodies. J Clin Invest 1995;96:2211–2219.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Pierangeli SS, et al. Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation 1999;99:1997–2002.

    PubMed  CAS  Google Scholar 

  12. Ma K, et al. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem 2000;275:15541–15548.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Meroni PL, et al. Beta2-glycoprotein I as a “cofactor” for anti-phospholipid reactivity with endothelial cells. Lupus 1998;7(suppl 2):S44–S47.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Kandiah DA, Krilis SA. Beta 2-glycoprotein I. Lupus 1994;3:207–212.

    PubMed  CAS  Google Scholar 

  15. Walport MJ. Complement. First of two parts. N Engl J Med 2001;344:1058–1066.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Weiser MR, et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med 1996;183:2343–2348.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997;158:4525–4528.

    PubMed  CAS  Google Scholar 

  18. Mevorach D, et al. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 1998;188:2313–2320.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Hugli TE. Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol 1990;153:181–208.

    PubMed  CAS  Google Scholar 

  20. Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol 1991;3:76–82.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Holers VM. In: Rich R, ed. Complement, principles and practices of clinical immunology. St. Louis, MO: Mosby, 1995:363.

    Google Scholar 

  22. Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature 1991;349:614–617.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Wetsel RA. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 1995;7:48–53.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Morgan BP, Meri S. Membrane proteins that protect against complement lysis. Semin Immunopathol 1994;15:369–396.

    CrossRef  CAS  Google Scholar 

  25. Shin ML, Rus HG, Nicolescu FI. Membrane attack by complement: assembly and biology of terminal complement complexes. Biomembranes 1996;4:123–149.

    CAS  Google Scholar 

  26. Hourcade D, Holers VM, Atkinson JP. The regulators of complement activation (RCA) gene cluster. Adv Immunol 1989;45:381–416.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Lublin DM, Atkinson JP. Decay-accelerating factor and membrane cofactor protein. Curr Top Microbiol Immunol 1989;153:123–145.

    Google Scholar 

  28. Oglesby TJ, et al. Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. J Exp Med 1992;175:1547–1551.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Holers VM. Complement as a regulatory and effector pathway in human diseases. In: Lambris JD, Holers VM, eds. Therapeutic interventions in the complement system. Totowa, NJ: Humana Press: 2000;1–32.

    Google Scholar 

  30. Kim YU, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med 1995;181:151–159.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Xu C, et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000;287:498–501.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Girardi G, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003;112:1644–1654.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Holers VM et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 2002;195:211–220.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Thurman T, et al. A novel inhibitor of the alternative pathway of complement protects mice from fetal injury in the antiphopsholipid syndrome. Mol Immunol 2004;41:318.

    Google Scholar 

  35. Huber-Lang M, et al. Generation of C5a by phagocytic cells. Am J Pathol 2002;161:1849–1859.

    PubMed  CAS  Google Scholar 

  36. Pierangeli SS, et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost 1994;71:670–674.

    PubMed  CAS  Google Scholar 

  37. Pierangeli SS, et al. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost 1995;74:1361–1367.

    PubMed  CAS  Google Scholar 

  38. Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 1994;179:985–992.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Hattori R, et al. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 1989;264:9053–9060.

    PubMed  CAS  Google Scholar 

  40. Kondo C, et al. The role of C5a in the development of thrombotic glomerulonephritis in rats. Clin Exp Immunol 2001;124:323–329.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Samoszuk M, Corwin M, Hazen SL. Effects of human mast cell tryptase and eosinophil granule proteins on the kinetics of blood clotting. Am J Hematol 2003;73:18–25.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Wojta J, et al. C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 2002;100:517–523.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Shebuski RJ, Kilgore KS. Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 2002;300:729–735.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Ikeda K, et al. C5a induces tissue factor activity on endothelial cells. Thromb Haemost 1997;77:394–398.

    PubMed  CAS  Google Scholar 

  45. Pierangeli SS, et al. Complement C5 Activation is required for antiphospholipid antibody-induced thrombofilia. Arthritis Rheum 2003;48:S163.

    Google Scholar 

  46. Shin ML, et al. Membrane factors responsible for homologous species restriction of complementmediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol 1986;136:1777–1782.

    PubMed  CAS  Google Scholar 

  47. Morgan BP. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J 1989;264:1–14.

    PubMed  CAS  Google Scholar 

  48. Nangaku M, et al. CD59 protects glomerular endothelial cells from immune-mediated thrombotic microangiopathy in rats. J Am Soc Nephrol 1998;9:590–597.

    PubMed  CAS  Google Scholar 

  49. Qin X, et al. Deficiency of the mouse complement regulatory protein mCd59b results in spontaneous hemolytic anemia with platelet activation and progressive male infertility. Immunity 2003;18:217–227.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Girardi, G., Salmon, J.E. (2006). Antiphospholipid Antibody-Induced Pregnancy Loss and Thrombosis. In: Khamashta, M.A. (eds) Hughes Syndrome. Springer, London. https://doi.org/10.1007/1-84628-009-5_31

Download citation

  • DOI: https://doi.org/10.1007/1-84628-009-5_31

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-873-2

  • Online ISBN: 978-1-84628-009-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics