Concluding Remarks
PET detectors and instrumentation have developed into sophisticated clinical tools, but further scope exists to develop higher-sensitivity, higher-resolution devices. There are now a number of scintillator crystals employed in commercial scanners, each with their own unique characteristics, including price. The range of scintillators may expand even further, especially if time-of-flight machines are developed. Light-collection technology may move away from photomultiplier tubes to solid-state devices (photodiodes) which will improve coupling and increase the bandwidth for data collection and processing by reducing the multiplexing of the signals.
Scanner design will continue to evolve and provide challenges in terms of photon detection, discrimination, and performance. Developments in basic physics will underpin many of these enhancements.
Chapter reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, 41–67.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klein O, Nishina Y. Uber die streuung von strahlung durch frei elektronen nach der neuen relativistischen quantendynamik von Dirac. Z Physik 1928;52:853–868.
Hubbell JH. Review of photon interaction cross section data in the medical and biological context. Phys Med Biol 1999;44(1):R1–22.
Hubbell JH. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV: National Bureau of Standards, US Dept of Commerce; 1969.
ICRU. Tissue substitutes in radiation dosimetry and measurement. Bethesda, MD, USA: International Commission on Radiation Units and Measurements; 1989. Report No. 44.
Townsend DW, Frey P, Jeavons A, Reich G, Tochon-Danguy HJ, Donath A, et al. High-density avalanche chamber (HIDAC) positron camera. J Nucl Med 1987;28:1554–62.
Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;NS-46:468–73.
Knoll GF. Radiation detection and measurement. 2nd ed. New York: John Wiley and Sons; 1988.
Karp JS, Muehllehner G, Geagan MJ, Freifelder R. Whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 1998;39:50P(abstract).
Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthorthsilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 1992;39(4):502–5.
Lecomte R, Cadorette J, Richard P et al. Design and engineering aspects of a high-resolution positron tomograph for small-animal imaging. IEEE Trans Nucl Sci 1996;NS-41(4):1446–52.
Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136–43.
Cherry SR, Shao Y, Silverman RW, Chatziioannou A, Meadors K, Siegel S, et al. MicroPET: A high-resolution PET scanner for Imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.
Casey ME, Nutt R. A multicrystal, two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 1986;NS-33(1):460–3.
Wong W, Uribe J, Hicks K, Hu G. An analog decoding BGO block detector using circular photomultipliers. IEEE Trans Nucl Sci 1995;NS-42:1095–101.
Adam LE, Zaers H, Ostertag H, Trojan H, Bellemann ME, Brix G. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci 1997;NS-44:1172–9.
Carrier C, Martel C, Schmitt C, Lecomte R. Design of a high-resolution positron emission tomograph using solid scintillation detectors. IEEE Trans Nucl Sci 1988;NS-35(1):685–90.
Huber JS, Moses WW, Derenzo SE, Ho MH, Andreaco MS, Paulus MJ, et al. Characterization of a 64-channel PET detector using photodiodes for crystal identification. IEEE Trans Nucl Sci 1997;NS-44:1197–201.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag London Limited
About this chapter
Cite this chapter
Bailey, D.L., Karp, J.S., Surti, S. (2005). Physics and Instrumentation in PET. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London. https://doi.org/10.1007/1-84628-007-9_2
Download citation
DOI: https://doi.org/10.1007/1-84628-007-9_2
Publisher Name: Springer, London
Print ISBN: 978-1-85233-798-8
Online ISBN: 978-1-84628-007-8
eBook Packages: MedicineMedicine (R0)