Skip to main content

PET as a Tool in Multimodality Imaging of Gene Expression and Therapy

  • Chapter
Positron Emission Tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature 2001;409(6822):853–855.

    Article  PubMed  CAS  Google Scholar 

  2. Cherry SR et al. MicroPET: A high-resolution PET scanner for imaging small animals. IEEE Transactions on Nuclear Science 1997;44(3):1161–1166.

    Article  CAS  Google Scholar 

  3. Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med 2000;41(4):661–681.

    PubMed  CAS  Google Scholar 

  4. Giannoukakis N et al. Infection of intact human islets by a lentiviral vector. Gene Ther 1999;6(9):1545–1551.

    Article  PubMed  CAS  Google Scholar 

  5. Hanazono Y et al. In vivo marking of rhesus monkey lymphocytes by adeno-associated viral vectors: direct comparison with retroviral vectors. Blood 1999;94(7):2263–2270.

    PubMed  CAS  Google Scholar 

  6. Lozier JN et al. Gut epithelial cells as targets for gene therapy of hemophilia. Hum Gene Ther 1997;8(12):1481–1490.

    PubMed  CAS  Google Scholar 

  7. Wheeler CJ et al. A novel cationic lipid greatly enhances plasmid delivery and expression in mouse lung. Proc Natl Acad Sci USA 1996;93:11454–11459.

    Article  PubMed  CAS  Google Scholar 

  8. During, MJ et al. Long-term behavioral recovery in Parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 1994;266:1399–1403.

    PubMed  CAS  Google Scholar 

  9. Numes FA, Raper SE. Liver-directed gene therapy. Med Clin North Am 1996;80:1201–1213.

    Google Scholar 

  10. Blaese RM et al. T lymphocyte-directed gene therapy for ADASCID: initial trial results after 4 years. Science 1995;270(5235):475–480.

    PubMed  CAS  Google Scholar 

  11. Onodera M et al. Development of improved adenosine deaminase retroviral vectors. J Virol 1998;72(3):1769–1774.

    PubMed  CAS  Google Scholar 

  12. Miller DG, Adam, MA, Miller AD. Gene transfer by retrovirus vector occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990;10:4139–4142.

    Google Scholar 

  13. Roe TY et al. Integration of murine leukemia virus DNA depends on mitosis. EMBO Journal 1993;12(5):2099–2108.

    PubMed  CAS  Google Scholar 

  14. Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998;9(5):457–463.

    Article  PubMed  CAS  Google Scholar 

  15. Blmer U et al. Highly efficient and sustained gene transfer in adult neurones with a lentivirus vector. J Virol 1997;71:6641–6649.

    Google Scholar 

  16. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genetics 1997;17(3):314–317.

    PubMed  CAS  Google Scholar 

  17. Miyoshi H et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997;94:10319–10323.

    Article  PubMed  CAS  Google Scholar 

  18. Emerman M. Learning from lentiviruses [news]. Nature Genetics 2000;24(1):8–9.

    Article  PubMed  CAS  Google Scholar 

  19. Verma IM, Somia N. Gene therapy — promises, problems and prospects [news]. Nature 1997;389(6648):239–242.

    Article  PubMed  CAS  Google Scholar 

  20. Graham FL et al. Characteristics of a human cell line transformed by DNA from adenovirus type 5. J Gen Virol 1977;36:59–72.

    PubMed  CAS  Google Scholar 

  21. Kotin RM et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990;87:2211–2215.

    Article  PubMed  CAS  Google Scholar 

  22. Samulski RJ, Chang L, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989;63:3822–3828.

    PubMed  CAS  Google Scholar 

  23. Mountain A. Gene therapy: the first decade. Trends in Biotechnology 2000;18(3):119–128.

    Article  PubMed  CAS  Google Scholar 

  24. Wolfe D et al. Design and use of herpes simplex viral vectors for gene therapy. In: Templeton NS, Lasic DD, Editors. Gene therapy: therapeutic mechanisms and strategies. New York: Marcel Dekker 2000;81–108.

    Google Scholar 

  25. Tseng JC, Levin B, Hirano T, Yee H, Pampeno C, Meruelo D. In vivo antitumor activity of Sindbis viral vectors. J Natl Cancer Inst 2002;94(23):1790–1802.

    PubMed  CAS  Google Scholar 

  26. Tseng JC, Levin B, Hurtado A, Yee H, Perez de Castro I, Jimenez M, Shamamian P, Jin R, Novick RP, Pellicer A, Meruelo D. Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol 2004;22(1):70–77.

    Article  PubMed  CAS  Google Scholar 

  27. Shariat SF et al. Adenovirus-mediated transfer of inducible caspases: a novel “death switch” gene therapeutic approach to prostate cancer. Cancer Res 2001;61(6):2562–2571.

    PubMed  CAS  Google Scholar 

  28. Recchia A et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 1999;96(6):2615–2620.

    Article  PubMed  CAS  Google Scholar 

  29. Rinaudo D et al. Conditional site-specific integration into human chromosome 19 by using a ligand-dependent chimeric adeno-associated virus/Rep protein. J Virol 2000;74(1):281–294.

    Article  PubMed  CAS  Google Scholar 

  30. Constantini LC, Wang S, Fraefel C, Breakefield XO, Isacson O. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999;10:2481–2494.

    Article  Google Scholar 

  31. Jacobs A et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001;61(7):2983–2995.

    PubMed  CAS  Google Scholar 

  32. Lam PY, Breakefield XO. Hybrid vector designs to control the delivery, fate and expression of transgenes. J Gene Med 2000;2(6):395–408.

    Article  PubMed  CAS  Google Scholar 

  33. Wunderbaldinger P, Bogdanov A, Weissleder, R. New approaches for imaging in gene therapy. Eur J Radiol 2000;34(3):156–165.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson WF. Human gene therapy. Nat 1998;392(6679(suppl)):25–30.

    CAS  Google Scholar 

  35. Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature 1989;337:387–388.

    Article  PubMed  CAS  Google Scholar 

  36. Roper C. Liposomes as a gene delivery system. Brazilian J Med Biol Res 1999;32:163–169.

    Google Scholar 

  37. Loeffler JP, Behr JP. Gene transfer into primary and established mammalian cell lines with lipopolyamine-coated DNA. Methods in Enzymology 1993;217:599–618.

    PubMed  CAS  Google Scholar 

  38. Wolff JA et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468.

    PubMed  CAS  Google Scholar 

  39. Cheng L, Ziegelhoffer PR, Yang NS. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 1993;90:4455–4459.

    Article  PubMed  CAS  Google Scholar 

  40. Spooner RA, Deonarain MP, Epenetos AA. DNA vaccination for cancer treatment. Gene Ther 1995;2(3):173–180.

    PubMed  CAS  Google Scholar 

  41. Matano T et al. Targeted infection of a retrovirus bearing a Cd4-Env Chimera into human cells expressing human immunodeficiency virus type 1. J Gen Virol, 1995;76:3165–3169.

    Article  PubMed  CAS  Google Scholar 

  42. Dornburg R, Pomerantz RJ. Gene therapy and HIV-1 infection. In: Templeton NS, Lasic DD, Editors. Gene therapy: Therapeutic mechanisms and strategies. New York: Marcel Dekker 2000;519–533.

    Google Scholar 

  43. Nettelbeck DM, Jérôme V, Müller R. Gene therapy: designer promoters for tumor targeting. Trends in Genetics 2000;16(4):174–181.

    Article  PubMed  CAS  Google Scholar 

  44. Huber BE, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci USA 1991;88:8039–8043.

    Article  PubMed  CAS  Google Scholar 

  45. Ido A et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res 1995;55(14):3105–3109.

    PubMed  CAS  Google Scholar 

  46. Osaki T et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994;54(20):5258–5261.

    PubMed  CAS  Google Scholar 

  47. Cao G et al. Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther 1999;6(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  48. Cao G et al. Analysis of the human carcinoembryonic antigen promoter core region in colorectal carcinoma-selective cytosine deaminase gene therapy. Cancer Gene Ther 1999;6(6):572–580.

    Article  PubMed  CAS  Google Scholar 

  49. Ishikawa H et al. Utilization of variant-type of human alpha-fetoprotein promoter in gene therapy targeting for hepatocellular carcinoma. Gene Ther 1999;(4):465–470.

    Article  CAS  Google Scholar 

  50. Stein U, Walther W, Shoemaker RH. Vincristine induction of mutant and wild-type human multidrug-resistance promoters is cell-type-specific and dose-dependent. J Cancer Res Clin Oncol 1996;122(5):275–282.

    Article  PubMed  CAS  Google Scholar 

  51. Segawa T et al. Prostate-specific amplification of expanded polyglutamine expression: a novel approach for cancer gene therapy. Cancer Res 1998;58(11):2282–2287.

    PubMed  CAS  Google Scholar 

  52. Iyer M et al. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA 2001;98(25):14595–14600.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner JA, Gardner P. Toward cystic fibrosis gene therapy. Annu Rev Med 1997;48:203–216.

    Article  PubMed  CAS  Google Scholar 

  54. Teiger E et al. Gene therapy in heart disease. Biomed Pharmacother 2001;55(3):148–154.

    Article  PubMed  CAS  Google Scholar 

  55. Rader DJ. Gene therapy for atherosclerosis. Int J Clin Lab Res 1997;27(1):35–43.

    PubMed  CAS  Google Scholar 

  56. Rabinovich GA. Apoptosis as a target for gene therapy in rheumatoid arthritis. Mem Inst Oswaldo Cruz 2000;95(Supp 1):225–233.

    PubMed  CAS  Google Scholar 

  57. Isner JM et al. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89(5):389–400.

    PubMed  CAS  Google Scholar 

  58. Haberkorn U et al. Monitoring of gene therapy with cytosine deaminase:in vitro studies using 3H-5-fluorocytosine. J Nucl Med 1996;37:87–94.

    PubMed  CAS  Google Scholar 

  59. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for prospective cancer control strategy. Cancer Res 1986;46:5276–5281.

    PubMed  CAS  Google Scholar 

  60. De Clercq E. Antivirals for the treatment of herpes virus infections. J Antimicrob Chemothe 1993;32(Suppl. A):1–2132.

    Google Scholar 

  61. Alrabiah FA, Sacks SL. New anti-herpes virus agents: their targets and therapeutic potential. Drugs 1996;52(1):17–32.

    PubMed  CAS  Google Scholar 

  62. Myers CE. The pharmacology of the fluoropyrimidines. Pharmacol Rev 1981;33:1–15.

    Article  PubMed  CAS  Google Scholar 

  63. Scholer HJ. Flucytosine. In: Speller DCE, editor. New York: Wiley 1980;35–106.

    Google Scholar 

  64. Nishiyama T, Kawamura Y, Kawamoto KEA. Antineoplastic effects of 5-fluorocytosine in combination with cytosine deaminase capsules. Cancer Res 1985;45:1753–1761.

    PubMed  CAS  Google Scholar 

  65. Logothetis CJ et al. Altered expression of retinoblastoma protein and known prognostic variables in locally advanced bladder cancer. J Natl Cancer Inst 1992;84(16):1256–1261.

    PubMed  CAS  Google Scholar 

  66. Esrig D et al. Accumulation of nuclear P53 and tumor progression in bladder cancer. N Engl J Med 1994;331(19):1259–1264.

    Article  PubMed  CAS  Google Scholar 

  67. Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996;88(20):1442–1455.

    PubMed  CAS  Google Scholar 

  68. Hall PA, Lane DP. Tumor suppressors: a developing role for p53? Curr Biol 1997;7(3):R144–R147.

    Article  PubMed  CAS  Google Scholar 

  69. Fujiwara T et al. Therapeutic effect of a retroviral wild type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 1994;86:1458–1462.

    PubMed  CAS  Google Scholar 

  70. Lesoon-Wood LA et al. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum Gene Ther 1995;6(4):395–405.

    PubMed  CAS  Google Scholar 

  71. Xu M et al. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther 1997;8(2):177–185.

    PubMed  CAS  Google Scholar 

  72. Roth JA et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer [see comments]. Nat Med 1996;2(9):985–991.

    Article  PubMed  CAS  Google Scholar 

  73. Bookstein R et al. p53 gene therapy in vivo of herpatocellular and liver metastatic colorectal cancer. Semin Oncol 1996;23(1):66–77.

    PubMed  CAS  Google Scholar 

  74. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science 1996;274(5286):373–376.

    Article  PubMed  CAS  Google Scholar 

  75. Heise C et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents [see comments]. Nat Med 1997;3(6):639–645.

    Article  PubMed  CAS  Google Scholar 

  76. Lowe SW et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994;266:807–810.

    PubMed  CAS  Google Scholar 

  77. Gjerset RA et al. Characterization of a new human glioblastoma cell line that expresses mutant p53 and lacks activation of the PDGF pathway. In Vitro Cellular and Developmental Biology. Animal 1995;31(3):207–214.

    CAS  Google Scholar 

  78. Nguyen DM et al. Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. Journal of Thoracic and Cardiovascular Surgery 1996;112(5):1372–6; discussion 1376–1377.

    Article  PubMed  CAS  Google Scholar 

  79. Hall SJ, Chen SH, Woo SLC. The promise and reality of cancer gene therapy. American J Hum Genet 1997;61(4):785–789.

    CAS  Google Scholar 

  80. Kupfer A, Singer SJ. The specific interaction of helper T-cells and antigen-presenting B-cells. 4. Membrane and cytoskeletal reorganizations in the bound T-cell as a function of antigen dose. J Exp Med 1989;170(5):1697–1713.

    Article  PubMed  CAS  Google Scholar 

  81. Dranoff G et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993;90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  82. Connor J et al. Regression of bladder tumors in mice treated with interleukin-2 gene-modified tumor cells. J Exp Med 1993; 177(6):1833.

    Google Scholar 

  83. Smith AE. Gene therapy — where are we? Lancet 1999;354Suppl 1 (1):SI1–SI4.

    PubMed  Google Scholar 

  84. Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. Institute for Laboratory Animal Research Journal 2001;42(3):219–232.

    CAS  Google Scholar 

  85. Borrelli E et al. Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 1988;85:7572–7576.

    Article  PubMed  CAS  Google Scholar 

  86. Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transfected by retroviral vectors. J Natl Cancer Inst 1990;82:297–300.

    PubMed  CAS  Google Scholar 

  87. Gambhir SS et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2(1–2):118–138.

    Article  PubMed  CAS  Google Scholar 

  88. Gambhir SS et al. Imaging of adenoviral directed herpes simplex virus Type 1 thymidine kinase gene expression in mice with ganciclovir. J Nucl Med 1998;39(11):2003–2011.

    PubMed  CAS  Google Scholar 

  89. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999;96(5):2333–2338.

    Article  PubMed  CAS  Google Scholar 

  90. Iyer M et al. 8-[F-18]fluoropenciclovir: An improved reporter probe for imaging HSV1-TK reporter gene expression in vivo using PET. J Nucl Med 2001;42(1):96–105.

    PubMed  CAS  Google Scholar 

  91. Alauddin MM et al. 9-[(3-[18F]-fluoro-1-hydroxy-2propoxy)-methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol 1996; 23(6):787–792.

    Article  PubMed  CAS  Google Scholar 

  92. Alauddin MM et al. Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy) methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nuclr Med Biol 1999;26(4):371–376.

    Article  CAS  Google Scholar 

  93. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 1998;25(3):175–180.

    Article  PubMed  CAS  Google Scholar 

  94. Tjuvajev JG et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: A potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095.

    PubMed  CAS  Google Scholar 

  95. Tjuvajev JG et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58(19):4333–4341.

    PubMed  CAS  Google Scholar 

  96. Iyer M et al. Comparison of FPCV, FHBG, and FIAU as reporter probes for imaging Herpes Simplex Virus Type 1 thymidine kinase reporter gene expression. J Nucl Med 2000;41(5 Suppl):80–81.

    Google Scholar 

  97. Tjuvajev JG et al. Direct comparison of HSV1-TK PET imaging probes: FIAU, FHPG, FHBG. J Nucl Med 2001;42(5):277.

    Google Scholar 

  98. Gambhir SS et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000;97(6):2785–2790.

    Article  PubMed  CAS  Google Scholar 

  99. Black ME et al. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc Natl Acad Sci USA 1996;93:3525–3529.

    Article  PubMed  CAS  Google Scholar 

  100. Green LA et al. Simulation studies of assumptions of a three-compartment FHBG model for imaging reporter gene expression. J Nucl Med 2001;42(5):100.

    Google Scholar 

  101. Gambhir SS et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998;39(11):2003–2011.

    PubMed  CAS  Google Scholar 

  102. Green LA et al. Indirect monitoring of endogenous gene expression by PET imaging of reporter gene expression in transgenic mice. Molecular Imaging and Biology 2002;4(1):71–81.

    Article  PubMed  Google Scholar 

  103. Green LA et al. Tracer kinetic modeling of FHBG in mice imaged with microPET for quantitation of reporter gene expression. J Nucl Med 2000;41(5 Suppl):58.

    Google Scholar 

  104. Tjuvajev JG et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–6132.

    PubMed  CAS  Google Scholar 

  105. Bennett JJ et al. Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Nat Med 2001;7(7):861–865.

    Article  CAS  Google Scholar 

  106. Doubrovin M et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA 2001;98(16):9300–9305.

    Article  PubMed  CAS  Google Scholar 

  107. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999;6:785–791.

    Article  PubMed  CAS  Google Scholar 

  108. Barrio JB et al. 3-(2′-[18F]fluoroethyl)spiperone: In vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J Cereb Blood Flow Metab 1989;9:830–839.

    PubMed  CAS  Google Scholar 

  109. Virgolini I et al. Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res 1998;58(9):1850–1859.

    PubMed  CAS  Google Scholar 

  110. Rogers BE et al. In vivo localization of [(111)In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 1999;5(2):383–393.

    PubMed  CAS  Google Scholar 

  111. Rogers BE, Zinn KR, Buchsbaum DJ. Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 2000;44(3):208–223.

    PubMed  CAS  Google Scholar 

  112. Liang Q et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001; 8(19):1490–1498.

    Article  PubMed  CAS  Google Scholar 

  113. Chung June-Key. Sodium Iodide Symporter: Its Role in Nuclear Medicine. J Nuc Med. 2002;43(9):1188–1200.

    CAS  Google Scholar 

  114. Petrich T et al. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. European J Nuc Med 2002;29(7):842–854.

    Article  CAS  Google Scholar 

  115. Shen DHY et al. Sodium iodide symporter in health and disease. Thyroid 2001;11(5):415–425.

    Article  PubMed  CAS  Google Scholar 

  116. Groot-Wassink T et al. Adenovirus biodistribution and non-invasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene 2002;13(14):1723–1735.

    CAS  Google Scholar 

  117. Niu G et al. Multimodality Noninvasive Imaging of Gene Transfer Using the Human Sodium Iodide Symporter. J Nucl Med 2004;45(3):445–449.

    PubMed  CAS  Google Scholar 

  118. Shin JH et al. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging 2004;31(3):425–432.

    Article  PubMed  CAS  Google Scholar 

  119. Groot-Wassink T et al. Quantitative imaging of na/i symporter transgene expression using positron emission tomography in the living animal 2004;9(3):436–442.

    CAS  Google Scholar 

  120. Ray P et al. Monitoring gene therapy with reporter gene imaging. Sem Nucl Med 2001;31(4):312–320.

    Article  CAS  Google Scholar 

  121. Sonenberg N, Pelletier J. Poliovirus translation — a paradigm for a novel initiation mechanism. Bioessays 1989;11(5):128–132.

    Article  PubMed  CAS  Google Scholar 

  122. Jang SK et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988;62(8):2636–2643.

    PubMed  CAS  Google Scholar 

  123. Jang SK et al. Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomy-ocarditis virus RNA in vivo. J Virol 1989;63(4):1651–1660.

    PubMed  CAS  Google Scholar 

  124. Yu Y et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000; 6(8):933–937.

    Article  PubMed  CAS  Google Scholar 

  125. Tjuvajev JG et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999;1(4):315–320.

    Article  PubMed  CAS  Google Scholar 

  126. Kamoshita N et al. Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology 1997;233(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  127. Jackson R, Howell M, Kaminski A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 1990;15(12):477–483.

    Article  PubMed  Google Scholar 

  128. Wang YL et al. New approaches for linking PET & therapeutic reporter gene expression for imaging gene therapy with increased sensitivity. J Nucl Med 2001;42(5):75.

    Google Scholar 

  129. Chappell SA, Edelman GM, Mauro VP. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci USA 2000;97(4):1536–1541.

    Article  PubMed  CAS  Google Scholar 

  130. Wahlfors JJ et al. Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther 2000;7(6):472–480.

    Article  PubMed  CAS  Google Scholar 

  131. Loimas S, Wahlfors J, Jänne J. Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 1998; 24(4):614–618.

    PubMed  CAS  Google Scholar 

  132. Jacobs A et al. Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1999;1(2):154–161.

    Article  PubMed  CAS  Google Scholar 

  133. Strathdee CA, McLeod MR, Underhill TM. Dominant positive and negative selection using luciferase, green fluorescent protein and beta-galactosidase reporter gene fusions. Biotechniques 2000; 28(2):210–214.

    PubMed  CAS  Google Scholar 

  134. Ray P et al. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 2004;64(4):1323–1330.

    Article  PubMed  CAS  Google Scholar 

  135. Yaghoubi SS et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 2001;8(14): 1072–1080.

    Article  PubMed  CAS  Google Scholar 

  136. Sun X et al. Quantitative imaging of gene induction in living animals. Gene Ther 2001;8(20):1572–1579.

    Article  PubMed  CAS  Google Scholar 

  137. Yaghoubi SS et al. Human pharmacokinetics and dosiometry studies of [18F]FHBG: A reporter probe for imaging herpes simplex virus type 1 thymidine kinase (hsv1-tk) reporter gene expression. J Nucl Med 2001;42(8):1225–1234.

    PubMed  CAS  Google Scholar 

  138. Jacobs A et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358:727–729.

    Article  PubMed  CAS  Google Scholar 

  139. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219(2):316–333.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

De, A., Gambhir, S.S. (2005). PET as a Tool in Multimodality Imaging of Gene Expression and Therapy. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London. https://doi.org/10.1007/1-84628-007-9_18

Download citation

  • DOI: https://doi.org/10.1007/1-84628-007-9_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-798-8

  • Online ISBN: 978-1-84628-007-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics