Skip to main content

Whole-Body PET Imaging Methods

  • Chapter
  • 7674 Accesses

Conclusions

In as little as a decade whole-body PET imaging has emerged as an essential component of medical imaging in oncology. Rather than being a competitor of CT based anatomical diagnosis in body oncology imaging, the complimentary value of metabolic diagnosis provided by PET and anatomical diagnosis provided by CT is now manifest in combined PET/CT scanners, which likely will quickly become the standard for body oncology medical diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shreve PD. Status of clinical PET in the USA and the role and activities of the institute for clinical PET. In: Positron Emission Tomography: A Critical Assessment of Recent Trends. [Bulyas B and Muller-Gartner HW, Eds] Dordrecht: Kluwer 1998:33–42.

    Google Scholar 

  2. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxail reconstruction tomography. J Nucl Med 1975;16:210–224.

    PubMed  CAS  Google Scholar 

  3. Ter-Pogossian MM, Phelps ME, Hoffman EJ, et. al. A positron-emission transaxial tomograph for nuclear medicine imaging (PETT). Radiology 1975;114:89–98.

    PubMed  CAS  Google Scholar 

  4. Willimas, Crabtree, Burgiss. Design and performance characteristics of a positron emission computed axial tomograph-ECAT-II. IEEE Trans Nucl Sci 1979;26.

    Google Scholar 

  5. Hoffman EJ, Phelps ME, Huang S-C. Perfomance evaluation of a positron tomograph designed for brain imaging. J Nucl Med 1983;24:245–257.

    PubMed  CAS  Google Scholar 

  6. Casey ME, Nutt R. A multicrystal two-dimensional BGO detector system for postiron emission tomography. IEEE Trans. Nucl Sci 1986;NS33:460–463.

    Article  Google Scholar 

  7. Gupta NC, Frank AR, Dewan NA, et. al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2Deoxy-D-glucose. Radiology 1992;184:441–444.

    PubMed  CAS  Google Scholar 

  8. Glaspy JA, Hawkins R, Hoh CK, Phelps ME. Use of positron emission tomography in oncology. Oncology 1993;7:41–50.

    PubMed  CAS  Google Scholar 

  9. Price P. Is there a future for PET in oncology. Eur J Nucl Med 1997;24:587–589.

    Article  PubMed  CAS  Google Scholar 

  10. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Onc 1993;11:2101–2111.

    CAS  Google Scholar 

  11. Rigo P, Paulus P, Kaschten BJ, et. al. Oncologic applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 1996;23:1641–1674.

    Article  PubMed  CAS  Google Scholar 

  12. Muehllehner G, Karp JS, Mankoff DA, Beerbohm, Ordonez CE. Design and performance of a new positron emission tomograph. IEEE Trans Nucl Sci 1988;35:670–674.

    Article  CAS  Google Scholar 

  13. Karp JS, Muehllehner G, Qu H, Yan X-H. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol 1995;40:929–944.

    Article  PubMed  CAS  Google Scholar 

  14. Townsend DL, Wensveen M, Byars LG, et. al. A rotating PET scanner using BGO block detectors: design, performance, and applications. J Nucl Med 1993;34:1367–1376.

    PubMed  CAS  Google Scholar 

  15. Mullani NA, Gould KL, Hitchens RE, et. al. Design and performance of POSICAM 6.5 BGO positron camera. J Nucl Med 1990;31:610–616.

    PubMed  CAS  Google Scholar 

  16. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W. Performance evaluation of the positron scanner ECAT EXACT. JCAT 1992;16:804–813.

    CAS  Google Scholar 

  17. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman J, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994;35:1398–1406.

    PubMed  CAS  Google Scholar 

  18. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Tans Med Imaging. 1994;13:601–609.

    Article  CAS  Google Scholar 

  19. Xu M, Cutler PD, Luk WK. Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE Trans Nucl Sci. 1996;43:331–336.

    Article  Google Scholar 

  20. Wahl RW. To AC or not to AC: that is the question. J Nucl Med 1999;40:2025–2028.

    PubMed  CAS  Google Scholar 

  21. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Tans. Nucl. Sci. 1989;36:964–968.

    Article  CAS  Google Scholar 

  22. Townsend DW, Geissbuhler A, Defrise M, et. al. Fully three-dimensional reconstruction for a PET camera with retractable septa. IEEE Tans. Med. Imaging 1991;MI-10:505–512.

    Article  Google Scholar 

  23. Muehllehner G. Design considerations for PET scanners. Quarterly Journal of Nuclear Medicine. 2002;45: 16–23.

    Google Scholar 

  24. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE 2000;47:1587–1594.

    Google Scholar 

  25. Beyer T, Townsend DW, Brun T, et. al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–1379.

    PubMed  CAS  Google Scholar 

  26. Shreve PD. Adding structure to function. J Nucl Med 2000;41:1380–1382.

    PubMed  CAS  Google Scholar 

  27. Kinahan PE. Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med. Phys. 1998;25:2046–2053.

    Article  PubMed  CAS  Google Scholar 

  28. Halpern B, Dahlbom M, Vranjesevic D, et. al. LSO-PET/CT whole-body imaging in 7 minutes: is it feasible? J Nucl Med 2003;44:380–381.

    Google Scholar 

  29. Bar-Shalom R, Yefremov N, Guralnik L, et. al. Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 2003;44:1200–1209.

    PubMed  Google Scholar 

  30. Cohade C, Osman M, Leal J, Wahl RL. Direct comparison of 18F-FDG and PET/CT in patients with colorectal carcinoma. J Nucl Med 2003;44:1797–1803.

    PubMed  Google Scholar 

  31. Ollenberger GP, Weder W, von Schulthess GK, Steinert HC. Staging of lung cancer with integrated PET-CT. N Engl J Med 2004;350:86–87.

    Article  PubMed  CAS  Google Scholar 

  32. Shreve, PD, Anzai Y, Wahl RW. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics 1999;19:61–67.

    PubMed  CAS  Google Scholar 

  33. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration of FDG uptake in cancer: a PET study. J Nucl Med 1993;34:1–6.

    PubMed  CAS  Google Scholar 

  34. Vesselle HJ, Miraldi FD. FDG PET of the retroperitoneum: normal anatomy, variants, pathological conditions, and strategies to avoid diagnostic pitfalls. RadioGraphics 1998;18:805–823.

    PubMed  CAS  Google Scholar 

  35. Brigid GA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR 1997;169:1675–1680.

    Google Scholar 

  36. Miraldi F, Vesselle H, Faulhaber PF, Adler LP, Leisure GP. Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med 1998;23:3–7.

    Article  PubMed  CAS  Google Scholar 

  37. Stahl A, Weber W, Avril N, Schwaiger M. The effect of N-butylscopolamine on intestinal uptake of F-18 fluorodeoxyglucose in PET imaging of the abdomen. Eur J Nucl Med 1999;26(P):1017.

    Google Scholar 

  38. Kostakoglu L, Wong JCH, barrington SF, Cronin BF, Dynes AM, Maisey MN. Speech-related visualization of laryngeal muscles with fluorine-18 FDG. J Nucl Med 1996;37:1771–1773.

    PubMed  CAS  Google Scholar 

  39. Hany TF, Gharelpapagh E, Kamel E, Buch A, Himms-Hagen J, von Schulthess G. Brown adipose tissue: a factor to consider in symetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002;29:1393–1398.

    Article  PubMed  Google Scholar 

  40. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): Description on 18F-FDG PET/CT. J Nucl Med 2003;44:170–176.

    PubMed  CAS  Google Scholar 

  41. Yeung HWD, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of 18-F FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J Nucl Med 2003;44:1789–1796.

    PubMed  Google Scholar 

  42. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect on oral diazepam. J Nucl Med 1996;37:1127–1129.

    PubMed  CAS  Google Scholar 

  43. Beyer T. Personnel communication.

    Google Scholar 

  44. Beyer T, Antoch G, Muller S, Egelhof T, Freudenberg LS, Debatin J, Bockisch A. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004;45:25S–35S.

    PubMed  Google Scholar 

  45. Jones SC, Alavi A, Christman D, Montanez I, Wolf AP, Reivich M. The radiation dosimetry of 2-[F-18]fluoro-2Deoxy-D-glucose in man. J Nucl Med 1982;23:613–617.

    PubMed  CAS  Google Scholar 

  46. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 1994;35:1308–1312.

    PubMed  CAS  Google Scholar 

  47. Lowe V. Personnel communication.

    Google Scholar 

  48. Keyes JW Jr. SUV: standard uptake value or silly useless value? J Nucl Med 1995;36:1836–1839.

    PubMed  Google Scholar 

  49. Kostakoglu L, Goldsmith SJ. 18F FDG PET evaluation of the response to therapy for lymphoma and for breast, lung and colorectal carcinoma. J Nucl Med 2003;44:224–239.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shreve, P.D. (2005). Whole-Body PET Imaging Methods. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London. https://doi.org/10.1007/1-84628-007-9_13

Download citation

  • DOI: https://doi.org/10.1007/1-84628-007-9_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-798-8

  • Online ISBN: 978-1-84628-007-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics